蚁群算法(独辟蹊径的进化算法)

转自:http://www.dataguru.cn/article-11200-1.html

摘要: 高度结构化的组织——虽然蚂蚁的个体行为极其简单,但由个体组成的蚁群却构成高度结构化的社会组织,蚂蚁社会的成员有分工,有相互的通信和信息传递。自然优化——蚁群在觅食过程中,在没有任何提示下总能找到从蚁巢 ...

算法 计算机 超级计算 高性能 科学探索

1.  算法背景——蚁群的自组织行为特征
高度结构化的组织——虽然蚂蚁的个体行为极其简单,但由个体组成的蚁群却构成高度结构化的社会组织,蚂蚁社会的成员有分工,有相互的通信和信息传递。
自然优化——蚁群在觅食过程中,在没有任何提示下总能找到从蚁巢到食物源之间的最短路径;当经过的路线上出现障碍物时,还能迅速找到新的最优路径。
信息正反馈——蚂蚁在寻找食物时,在其经过的路径上释放信息素(外激素)。蚂蚁基本没有视觉,但能在小范围内察觉同类散发的信息素的轨迹,由此来决定何去何从,并倾向于朝着信息素强度高的方向移动。
自催化行为——某条路径上走过的蚂蚁越多,留下的信息素也越多(随时间蒸发一部分),后来蚂蚁选择该路径的概率也越高。

2. 算法基本思想:
(1)根据具体问题设置多只蚂蚁,分头并行搜索。
(2)每只蚂蚁完成一次周游后,在行进的路上释放信息素,信息素量与解的质量成正比。
(3)蚂蚁路径的选择根据信息素强度大小(初始信息素量设为相等),同时考虑两点之间的距离,采用随机的局部搜索策略。这使得距离较短的边,其上的信息素量较大,后来的蚂蚁选择该边的概率也较大。
(4)每只蚂蚁只能走合法路线(经过每个城市1次且仅1次),为此设置禁忌表来控制。
(5)所有蚂蚁都搜索完一次就是迭代一次,每迭代一次就对所有的边做一次信息素更新,原来的蚂蚁死掉,新的蚂蚁进行新一轮搜索。
(6)更新信息素包括原有信息素的蒸发和经过的路径上信息素的增加。
(7)达到预定的迭代步数,或出现停滞现象(所有蚂蚁都选择同样的路径,解不再变化),则算法结束,以当前最优解作为问题的最优解。

3. 信息素及转移概率的计算:

4. 算法步骤

算法流程图如下:

5. 举例分析
我们假设5个城市的TSP问题,然由于某种原因,城市道路均是单行道,即A->B和B->A的距离不相同,也就是说这是一个不对称的TSP问题。现在城市距离信息如下表:

设置参数:
m=5,α=1,β=1,ρ=0.5,τ_ij(0)=2。
第一次迭代第一只蚂蚁:

第一次迭代第二只蚂蚁

第一次迭代第三只蚂蚁:

第一次迭代第四只蚂蚁:

第一次迭代第五只蚂蚁:

第一次迭代完成,更新信息素矩阵,信息素挥发系数为0.5。

第一代蚂蚁全部累死,重新随机生成第二代蚂蚁进行迭代。
第二次迭代第一只蚂蚁:

第二次迭代第二只蚂蚁:

第二次迭代第三只蚂蚁:

第二次迭代第四只蚂蚁:

第二次迭代第五只蚂蚁:

至此,我们已经发现在第二次迭代的时候,五只蚂蚁走的是同一条路,所以算法收敛结束。    最优路径A->E->D->C->B->A, 最有路径的距离为9.

6. 算法特点:
是一种基于多主体的智能算法,不是单个蚂蚁行动,而是多个蚂蚁同时搜索,具有分布式的协同优化机制。
本质上属于随机搜索算法(概率算法),具有概率搜索的特征。
是一种全局搜索算法,能够有效地避免局部最优。

欢迎加入本站公开兴趣群
高性能计算群
兴趣范围包括:并行计算,GPU计算,CUDA,MPI,OpenMP等各种流行计算框架,超级计算机,超级计算在气象,军事,航空,汽车设计,科学探索,生物,医药等各个领域里的应用
QQ群:326600878
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值