2017年,我们发布了这些利器

mmbizgif?wxfrom=5&wx_lazy=1&retryload=1


Hello,大家好,先祝大家新年快乐!


大家的元旦假期都过得怎么样呢?是不是在吃吃吃、买买买、逛逛逛中愉快度过了呢?


元旦前我们给大家出的人工智能年终复习指南不知道有没有帮你get 到去年一整年的重点?今天,我们将继续做一个小小的复习总结,带大家回顾一下2017年我们都向AI江湖输送了哪些利器!


?wx_fmt=png&wxfrom=5&wx_lazy=1&retryload=1


寻路

?wx_fmt=jpeg&wxfrom=5&wx_lazy=1&retryload=1


室外GPS导航应用的大规模普及,拯救了无数路痴患者于水火之中。但“路痴”这个词尚未完全退出历史的舞台:由于卫星信号的衰减,GPS在室内几乎毫无用武之地。当你身处一个宛如迷宫的大商场时,要想找到想去的地点,不得不暂别先进的导航技术,回归于原始的地图和问路。


微软亚洲研究院在2017年推出了一个有趣的研究项目:寻路(Path Guide),提供低成本、即插即用的室内导航服务。在“领路人”的带领下,用户可以跟随前人的移动轨迹在室内找到通向某地的正确路线。研究员们基于室内磁场信息会受到建筑结构的干扰、不同位置的磁力传感器会有不同数据这一基本原理,又结合了多年来在移动计算、普适计算和智能感知等领域的积累,最终开发出了“寻路”这款可以提供室内导航服务的应用。它完全不需要室内地图信息,也不需要在室内预装任何硬件设备,在智能手机上下载应用后即可立即使用,完全实现了低成本、即插即用和易扩展的室内导航推广需求。


目前可以在Google Play等安卓应用市场搜索"Path Guide"或在项目官网下载“寻路”哦!


官网地址:https://mspg.azurewebsites.net/


?wx_fmt=png


Microsoft Learn Chinese


?wx_fmt=jpeg


想要学习好一门外语,大量的语言练习是必不可少的,但是如何能找到一个有时间、有能力、有耐心的陪练可是难倒了一大批小伙伴。之前微软亚洲研究院研发的贴心英语私教微软小英就完美地帮助学英语的同学解决了这一困难,让随时随地练英语的梦想不再遥不可及。

 

2017年,为了帮助中文学习者解决相似的语言学习难题,微软小英团队基于小英的底层技术开发了一个免费的智能手机应用——Microsoft Learn Chinese,一位24小时待命的人工智能语言学习助手,帮助咱们的“歪果仁”朋友说一口顺流的中文。


Microsoft Learn Chinese并非想要取代中文老师,它只是作为老师的一个助教,在学习者有时间或者精力练习的时候可以随时帮忙。研究团队利用大量母语人士语音数据训练出深度神经网络模型。利用该模型以及微软亚洲研究院最先进的TTS语音合成技术,Microsoft Learn Chinese可以识别学习者发出的语音,并对发音做出评价,给出一个分数反馈,还会高亮提示需要改进的单词。用户只需要点击界面里的链接即可听到正确发音的音频示例。


?wx_fmt=png


Coco Blockchain

?wx_fmt=jpeg


近年来,异军突起的“区块链”受到全行业的广泛关注,众多企业级用户在积极拥抱新技术的过程中却面临三大难题:性能、隐私和组织管理。如果不能很好地解决这些“顽固分子”,区块链技术就相对局限,很难发挥出应有的水平。


2017年,微软发布了企业级开源区块链基础平台Coco Blockchain Framework (Confidential Consortium Blockchain Framework ),可以一键解决企业区块链的三大挑战。该项目由微软亚洲研究院的区块链团队、Microsoft Azure 区块链产品组以及微软剑桥研究院一起设计和开发而成。

 

微软亚洲研究院区块链团队是Coco Framework设计与开发的区块链专家团队,负责Coco Framework中的区块链层,探索和解决将区块链系统整合进Coco Framework的技术路径。Coco Framework是企业级区块链的基础框架。它解决了实际业务中对区块链系统的最关键需求——隐私保护、高性能和组织管理。我们相信这是让区块链落地实际应用的坚实的第一步。


?wx_fmt=png


开放神经网络交换


?wx_fmt=jpeg


2017年,微软和Facebook宣布将推出Open Neural Network Exchange(ONNX,开放神经网络交换)格式,这是一个用于表示深度学习模型的标准,可使模型在不同框架之间进行迁移。ONNX是迈向开放生态系统的第一步,AI开发人员可以轻松地在最先进的工具之间转换,并选择最适合他们的组合。ONNX的应用能够弥合实验和生产过程中框架特征不一致产生的差异,让AI开发人员可以选择符合项目当前阶段的框架并实现自主切换。


微软一直以来坚持一个信念:将AI传递给更多的人,让每个人都能够亲身感受到技术进步带来的便利。因此,我们为大家提供很多行之有效的平台和工具,包括微软认知工具包,构建深层神经网络的开源框架,以促进AI的普及进程。我们还积极与其他组织展开合作,共同探讨行业问题、寻求解决方案。


?wx_fmt=png


AirSim拟真测试系统


?wx_fmt=jpeg


年初,微软开源了一个名叫AirSim的研究项目,一个高拟真的模拟测试系统,用于测试机器人、无人机等人工智能系统的安全性。AirSim能够提供逼真的环境、交通运输工具动力以及传感模拟,帮助研究人员和开发者使用AI在开放世界中构建安全的自动驾驶系统。


11月末,微软又推出了AirSim的更新,增加了汽车模拟系统,这一更新将有助于无人驾驶汽车的研究和开发。该版本已经在GitHub上发布并支持开源和跨平台。最新版的AirSim还包含了一些其它新的和增强的功能,例如用于飞行器测试的附加工具。新增的内置飞行控制器可简化初始设置过程,使无人机模拟飞行变得更简单。这些功能通过控制和状态估计算法可提高试验测试效率,相比嵌入式的高成本调试和开发更有优势。


?wx_fmt=png


图数据查询语言LIKQ


?wx_fmt=jpeg

去年,微软亚洲研究院通过GitHub 平台开源图数据查询语言LIKQ(Language-Integrated Knowledge Query)。LIKQ是基于分布式大规模图数据处理引擎Graph Engine的一种可用于子图和路径查询的数据查询语言。它可以让开发人员无需学习新的领域相关的特定查询语言,直接使用原生C#代码即可构建知识图谱语言,从而使海量图数据的实时检索和集成变得触手可得。


基于Graph Engine的查询语言LIKQ可以帮助用户更方便、直观地查询和检索Graph Engine所处理的图数据。开发者可以将LIKQ直接嵌入到编程语言(例如C#和JavaScript)中,而不需要学习新的领域相关的特定查询语言。例如,在一个知识图谱的前端应用中,开发者可以将LIKQ直接嵌入到前端JavaScript中来实现实时高效的知识图谱访问。同时,LIKQ还具备灵活的可扩展性,用Lambda表达式表达的任意计算逻辑都可以被直接嵌入到查询语句中,从而实现强大的服务器端计算。比如在数据查询中,开发者可以方便地嵌入通过Lambda表达式自定义的数据过滤条件来进行灵活的图模式匹配。


?wx_fmt=png


量子开发工具包


?wx_fmt=jpeg


量子计算机将会是革命性的,微软发布的“量子开发工具包”的免费预览版本将会帮助更多想学习量子计算机编程的开发人员领略量子计算的魅力。工具包包括专为量子计算开发的Q#编程语言、一款量子计算模拟器,以及能够帮助到量子程序开发者的其他资源。

 

这一工具包会被深度整合到Visual Studio开发工具包中,这样一来,已经使用其它编程语言在Visual Studio上做开发的人员对这一工具包的操作也不会感到陌生。做开发时,需要与工具包中提供的本地量子模拟器协同工作,这个模拟器在普通的笔记本电脑上能模拟大约30个逻辑量子位的量子计算,可以让开发人员在自己的计算机上利用小型实例进行量子代码调试和程序测试。对于需要大规模量子计算的开发者,微软同时提供了一个基于Azure的模拟器,它可以模拟超过40个逻辑量子位的计算能力。这套工具包允许开发人员创建可立即在量子模拟器上运行的应用,而未来,不需要进行代码修改,这些应用也将能够运行在微软正在开发的能够进行通用计算的拓扑量子计算机上。


怎么样,是不是突然发现2017年原来发生了这么多精彩呢?


我们一直相信,AI会让我们的生活变得更美好!


新的一年也请和我们一起继续期待改变的发生!


640.png?

感谢你关注“微软研究院AI头条”,我们期待你的留言和投稿,共建交流平台。来稿请寄:msraai@microsoft.com。


640.jpeg?


阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/Y2c8YpZC15p/article/details/78967371
上一篇微软CEO萨提亚·纳德拉:2017 年那些激励我的人和事
下一篇微软CEO萨提亚·纳德拉:新时代下商业灵魂的思考
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭