基于时变低增益反馈的高速列车在延迟通信网络下的协调控制
白伟奇,学生会员,IEEE,董海荣,高级会员,IEEE,张子轩,研究生会员, IEEE,和李一东,高级会员,IEEE
摘要
本文系统研究了存在未知通信延迟的多列高速列车 (HST)系统的协调控制问题。考虑到伺服电机的惯性滞后, 建立了三阶非线性控制模型以准确描述列车在实际运行中的动态 特性。利用反步线性化技术,将列车的协调控制问题转化为一个 具有未知输入延迟的线性多输入多输出系统的镇定问题。设计了 具有时变低增益参数的分布式控制律,不仅解决了镇定问题,还 保证了列车状态调整过程中的快速收敛速率。数值仿真结果表明, 与传统的恒定低增益反馈设计相比,所提出的时变低增益参数设 计在收敛速率和系统超调方面表现出更优的控制性能,且所提出 的控制方法在列车跟踪距离调整中具有有效性。
索引词 —高速列车,通信延迟,协调控制,低增益反馈。
一、引言
AS A一种快速、可靠、环保且载客量大的交通系统, 近年来高速铁路在全球范围内越来越受欢迎,关于列车运 行控制的研究已开展了大量工作[1]–[4]。在列车轨迹优化 方面,文献中已报道了显著成果[5]–[10]。在[5]–[8],中, 速度曲线优化问题被重新表述为最优控制问题,并基于庞 特里亚金极大值原理提出了各种解析算法,其中假设数学 模型满足某些严格条件
稿件于2020年5月21日收到;2020年10月12日和2020年11月25日修 订;2020年12月3日接受。本工作受国家自然科学基金资助号 61790573、资助号61925302和资助号U1934220支持。本文的副编辑为 R.戈弗德。(通讯作者:董海荣。)白伟奇隶属于中国北京100044, 北京交通大学轨道交通控制与安全国家重点实验室,同时隶属于中国北 京100811,北京理工大学机械工程学院,先进技术研究院(电子邮件: weiqibai@bjtu.edu.cn)。董海荣和张子轩隶属于中国北京100044, 北京交通大学轨道交通控制与安全国家重点实验室(电子邮件: hrdong@bjtu.edu.cn;18111063@bjtu.edu.cn)。李一东隶属于中 国北京100044,北京交通大学计算机与信息技术学院(电子邮件: ydli@bjtu.edu.cn)。数字对象标识符10.1109/TITS.2020.3043577
属性和优化指标通常局限于列车能耗和准点率。为了降低 对数学模型的要求,并将优化指标扩展到更复杂的运行控 制目标,研究中采用了先进的算法,如数值算法和进化算 法[9]–[11]。与上述旨在降低单列车能耗的研究不同,文 献[12],[13]关注协同列车运行问题,旨在优化多列车总 能耗。在获得最优列车速度曲线后,需要精心设计高效的 控制律。文献[14],研究了多列车协同控制问题,考虑了 相邻列车间无线通信的有限通信半径。文献[15],提出了 一种事件触发式模型预测控制方案,以在考虑实际约束 (如牵引/制动力建模饱和、安全追踪距离和有限通信资 源)的情况下保证列车的协同运行。在文献[16]中,基于 模型预测控制框架,在一种称为虚拟耦合的新型编队概念 下,提出了分布式控制律来处理高速列车的协调控制。
对于每一列列车而言,在协同运行过程中,其相邻列 车的实时运行信息对于保持安全追踪距离并实现速度一致 性至关重要。相邻列车之间的信息交换可通过双向车地通 信[17]以及新开发的列车到列车无线通信技术[18]实现。然而,在通信网络中不可避免地会引入随机数据包延迟。由于列车高速运行以及主从通信机制[19]的影响,该问题 在高速铁路信息传输网络中尤为突出。如果在控制器设计 中未考虑通信延迟,将降低列车的预期性能,严重时甚至 可能破坏列车控制系统的稳定性。以往关于高速列车协调 控制的研究通常假设列车通信网络中无延迟,这一假设在 实际场景中过于严格且难以实现。目前文献中关于考虑通 信延迟的列车协调控制的研究还较少。为减弱时间延迟对 控制性能的影响,已有大量
针对存在信息传输延迟的一般控制系统,已开发出多种控 制方法[20]–[26]。利用非负矩阵的属性,文献[21] 和 [22] 分别研究了具有动态通信拓扑的一阶和二阶离散时 间多智能体系统的一致性问题。文献[20], 提出了针对具 有输入延迟的线性系统的模型降阶技术,并基于此设计了 预测反馈律以稳定系统。预测反馈控制器包含一个由过去 输入信息片段构成的积分项。但为了实现该预测反馈控制 器,需要将积分项用精确的有限和进行逼近,这可能会导 致闭环系统失稳。因此,为解决这一问题,文献[23],[24] 基于低增益反馈技术提出了一类新的控制器,即截断预测 反馈控制器。文献[25] 研究了存在时变通信延迟的多智 能体系统的一致性控制问题,提出了分布式恒定低增益一 致性控制律。其中低增益参数是一个足够小的正常数,其 上界与延迟的最大值成反比[24],[25]。然而,由于推导 过程中存在大量近似估计,通过李雅普诺夫分析技术得到 的参数上界相当保守。为解决此问题,文献[26]设计了 一种时变低增益反馈控制器,用于调节所有开环特征值均 为零的线性输入延迟系统。然而,如何利用时变低增益反 馈设计来解决具有耦合子系统的复杂系统的协调控制问题, 目前仍缺乏深入研究。
受上述讨论的启发,本文旨在利用低增益反馈控制技 术,针对存在通信延迟的多列高速列车系统提出协同控制 律。本文的主要贡献总结如下:(1)考虑了列车通信网 络中的信息传输延迟问题,该问题在现有的列车协调控制 研究中鲜有涉及,并建立了时变低增益反馈控制协议以协 调调节列车运行状态。(2)构建了具有时变参数的分布 式低增益控制协议,不仅实现了列车的协同运行,还保证 列车能够达到预设速度曲线的状态一致性,同时保持较快 的列车状态调整过程。(3)与文献[25],中报道的恒定 低增益控制协议相比,本文的分布式控制协议采用时变低 增益参数,案例研究表明,所提出的控制协议在收敛速率 和系统超调方面表现出更优的控制性能,显著提高了低增 益反馈控制方法在多列高速列车协调控制中的适用性和可 行性。(4)与文献[26],中研究的线性系统的镇定问题相 比,多列高速列车的协调控制由于需要同时调节多个耦合 系统而更为复杂和具有挑战性。本研究将 在[26]中报道的结果扩展到具有耦合子系统的复杂系统。
本文其余部分结构如下。在第二节中,构建了考虑伺 服电机惯性滞后的多列高速列车系统动力学模型,并建立 了分布式低增益反馈控制律。第三节给出了主要结果。在 第四节中进行了数值仿真。第五节得出结论。
符号说明 :本文采用标准符号。对于向量 φ, |φ| 表 示其欧几里得范数。为便于分析,对于一般的向量值函数 κ(β,t) ∈ Rm, β ∈[0, 1],采用以下范数:‖κ(t) ‖= √∫ 1 0 κ(β,t)Tκ(β,t)dβ。且i ∈I[1, N]表示i= 1, 2,···,N。符号Cg[t1, t2],其中g ∈ N,t1<t2,表示在t ∈[ t1,t2]上具有g阶连续导数的实标量/向量函数的集合。
II. 问题描述
A. 多列高速列车系统动力学模型
考虑N列高速列车在铁路线路上以编队形式运行。 高速列车的运行阻力包括滚动机械阻力、气动阻力、曲线 阻力和坡度阻力。对于高速运行的高速列车,运行阻力的 主要部分为气动拖拽。特别是,高速铁路通常建于平坦稳 定路线之上,其曲率和坡度均较小。因此,本文主要将滚 动机械阻力和气动阻力视为运行阻力。根据文献[27], [28],中描述的建模准则,对第i列列车(i ∈I[1,N],)的动 力学模型建立如下:
$$
\frac{dp_i(t)}{dt} = v_i(t), \tag{1a}
$$
$$
m_i \frac{dv_i(t)}{dt} = f_i(t) - m_i(c_0 + c_v v_i(t) + c_a v_i^2(t)), \tag{1b}
$$
$$
\frac{df_i(t)}{dt} = \frac{1}{\iota}(F_i(t) - f_i(t)) \tag{1c}
$$
其中,pi和vi分别是第i列列车的位移和速度,fi是根据 伺服电机/制动单元的控制输入Fi产生的实际驱动力/制动 力, ι和mi分别为纵向动力学的惯性滞后和第i列列车的 质量。c0,、cv和ca为戴维斯系数。令v0为预设的巡航速 度,p0为列车车队中首列列车的期望位移,且 ˙p0= v0。 对于第i列列车,令xi,1=pi−p0+(i−1)l和xi,2=vi−v0,, 其中l为跟踪距离。
注释1 : 在实际中,伺服电机/制动单元根据控制指令 Fi(t)产生实际的牵引/制动力fi(t)通常存在一个动态过程。本文采用方程(1c),如[16], 中所述并采用,以近似描 述该动态过程。
令zi= m1ifi − ϕ(vi),它将系统(1)简化为如下级联连接,
$$
\dot{x}
{i,1} = x
{i,2}, \quad \dot{x}_{i,2} = z_i \tag{2a}
$$
$$
\dot{z}_i = \frac{1}{m_i \iota}(F_i - (1 + \iota(c_v + 2c_a v_i)) f_i) + (c_v + 2c_a v_i)\phi(v_i) \tag{2b}
$$
其中
$$
\phi_i = [c_0 + c_v v_i(t) + c_a v_i^2(t)]^T, \quad f_i = m_i \iota(c_v + 2c_a v_i)\phi(v_i)
$$
定义xx,,x,,z,并令Fmu((ccv))fmiι(c v+2cavi)ϕ(vi),其中ui表示上述Fi的未知部分,待确定。
假设1 :在通信网络中存在一个未知的恒定信息传输 延迟d,且d被一个常数d上界¯限制,该值在现实中可通 过现场实验获得。
注释2
: 考虑通信延迟,我们有
$$
F_i(t) = (1 + \iota(c_v + 2c_a v_i(t))) f_i(t) + m_i \iota \phi(v_i(t)) + m_i \iota u_i(t - d)
$$
其中Fi,1(t)仅包含第i列列车的信息,而Fi,2(t)包含其邻居 的延迟信息。然后,系统(2)被转换为
$$
\dot{x}_i(t) = A x_i(t) + B u_i(t - d), \quad t \geq 0. \tag{3}
$$
其中
$$
A = \begin{pmatrix} 0 & 1 & 0 \ 0 & 0 & 1 \ 0 & 0 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 0 \ 0 \ 1 \end{pmatrix}
$$
不失一般性,协调控制过程假设从t= 0开始,系统(3)的 初始条件给定为xi(β)= φi(β), φi(β) ∈C0 [−d, 0]。
注释3 : 注意(A,B)是可控的,并且所有特征值都等于零。
B. 分布式协调控制律
本文旨在为每列列车i提出一种分布式控制律ui(t), 通过协调控制确保列车达到速度一致性并以跟踪距离l运 行,同时使列车车队跟踪预设运行轨迹,即limt→∞xi(t) = 0,i ∈I[1,N]且limt→∞si(t)=l,其中si(t)=pi(t) −pi+1(t),i ∈I[1,N −1]。
采用一个加权无向图G=(V, E,A)来描述N列列车交 互拓扑。V={v1,v2,···,vN}中的每个顶点表示一列列 车。令 E ∈ V×V表示图中的通信边集合,并令 Ni={ v j:(vi,vj) ∈ E,j =i}表示第i列列车的邻居集合。则 A=[ai,j]N×N具有非负元素,是与图 G相关联的邻接 矩阵,且假设ai, E,i ∈I[1,N],,当列车i与列车j之间存 在边时ai,j= 1,否则ai,j= 0。最后, L=[li,j]N×N 是与 A相关联的图拉普拉斯矩阵,其定义如下:li, i=∑j ∈Ni ai,j,且当j =i时li,j= −ai,j。令H= diag{h1 ,h2,···,hN}并定义 Hg = L+ H。
假设2 : 用于描述列车通信网络的加权无向图 G 是连通的。
注释4 : 鉴于[14]中的引理1以及 G是连通的这一假设,我们 知道只要对于至少一个i,i ∈I[1,N],hi> 0成立,则H是正定的。
为第i列车构造如下控制律,i ∈I[1, N],
$$
u_i(t) = \rho B^T P(\gamma(t)) \sum_{j \in N_i} a_{i,j}(x_j(t) - x_i(t)) - h_i x_i(t) \tag{4}
$$
其中 σ=min{λi(Hg),i ∈I[1,N]},且ρ> σ−1,若第 i列列车可获取预设列车轨迹,则hi= 1,否则hi= 0, 且P(γ(t))> 0 满足以下代数Riccati方程,
$$
A^T P(\gamma) + P(\gamma)A - P(\gamma)BB^T P(\gamma) = -\gamma P(\gamma), \quad \gamma > 0 \tag{5}
$$
且 γ(t)被设计为满足
$$
\gamma(t) = \frac{\hat{d}}{h(t)} \tag{6}
$$
特别地,h> 0 是一个待确定的小常数,且ˆd(t) 满足
$$
\hat{d}(t) \in C^2[-d, \infty), \quad \hat{d}(t) > 0, \quad \lim_{t \to \infty} \hat{d}(t) = \bar{d}, \quad \lim_{t \to \infty} \dot{\hat{d}}(t) = 0 \tag{7}
$$
注释5
: 鉴于 ˆd(t) ∈ C2 [−d,∞)且ˆ ¯ ˆ limt→∞d(t)= d,可得d在ˆ ˆ ˆt ∈[−d,∞) 上有界。令d min= max= ˆ t∈[−d,∞) infd(t)且dsup t∈[−d,∞)d(t)。
注释6 : 通常,该值的 ˆ d(t)可以在列车状态调整过程的初始阶段主动选择一 个相对较小的初始值,这对应于 γ(t)的一个相对较大的初 始值,以确保更快的列车状态调整。
第三部分. 主要结果
定义
$$
\chi = [x_1^T, x_2^T, \cdots, x_N^T]^T, \quad U(t) = [u_1(t), u_2(t), \cdots, u_N(t)]^T
$$
列车车队的误差动态如下所示
$$
\dot{\chi}(t) = I_N \otimes A \chi(t) + I_N \otimes B U(t - d) \tag{8}
$$
其中U(t)具有如下形式
$$
U(t) = -\rho H_g \otimes T(\gamma(t)) \chi(t) \tag{9}
$$
其中T(γ(t))= BTP(γ(t))。令 π(ϕ,t)= U(t+d( ϕ − 1)), ϕ ∈[0, 1],其中 π(ϕ,t)满足以下输运偏微分 方程(PDE)dπt(ϕ,t)=πϕ(ϕ,t), π(1,t)= U(t)。由此可 得,延迟的控制输入U(t −d)= π(0,t)。因此,系统 (8)可重新整理如下
$$
\dot{\chi}(t) = I_N \otimes A \chi(t) + I_N \otimes B \pi(0, t), \tag{10a}
$$
$$
d \pi_t(\phi, t) = \pi_\phi(\phi, t), \quad \pi(1, t) = U(t) \tag{10b}
$$
ˆ对于d(t),我们定义一个函数 πˆ(ϕ,t)如下
$$
\hat{\pi}(\phi, t) = U(t + \hat{d}(\phi - 1)). \tag{11}
$$
请注意, πˆ(x,t)满足以下偏微分方程
$$
\hat{d} \hat{\pi}
t(\phi, t) = (1 + \dot{\hat{d}}(\phi - 1)) \hat{\pi}
\phi(\phi, t), \quad \hat{\pi}(1, t) = U(t) \tag{12}
$$
Let
$$
\psi(\phi, t) = \hat{\pi}(\phi, t) + \rho H_g \otimes B^T P(\gamma(t)) \chi(t) \tag{13}
$$
˜ ˆ此外,我们令d= d −d 并记
$$
\tilde{\pi}(\phi, t) = \pi(\phi, t) - \hat{\pi}(\phi, t), \tag{14}
$$
将(13)和(14)代入(8),在控制律(9)作用下的闭环系统被转化 为以下形式
$$
\dot{\chi}(t) = (I_N \otimes A - \Delta H_g \otimes B^T(\gamma)) \chi(t) + I_N \otimes B \tilde{\pi}(0, t) + I_N \otimes B \psi(0, t) \tag{15}
$$
利用(13)‐(15),我们得到了ψ(x, t)的偏微分方程,
$$
\hat{d} \psi_t(\phi, t) = (1 + \dot{\hat{d}}(\phi - 1)) \psi_\phi(\phi, t) + \hat{d} \rho H_g \otimes B^T \frac{\partial P}{\partial \gamma} \dot{\gamma}(t) \chi(t) + \hat{d} \rho H_g \otimes B^T P(\gamma(t)) \times ((I_N \otimes A - \Delta H_g \otimes B^T(\gamma)) \chi(t) + I_N \otimes B \tilde{\pi}(0, t) + I_N \otimes B \psi(0, t)) \tag{16a}
$$
$$
\psi(1, t) = 0 \tag{16b}
$$
根据(14),可得 π˜(ϕ,t)的偏微分方程如下
$$
d \tilde{\pi}
t(\phi, t) = \tilde{\pi}
\phi(\phi, t) - \frac{\tilde{d} + d \dot{\hat{d}}(\phi - 1)}{\hat{d}} \psi_\phi(\phi, t), \tag{17a}
$$
$$
\tilde{\pi}(1, t) = 0 \tag{17b}
$$
基于(16),ψϕ(ϕ,t)的偏微分方程满足
$$
\hat{d} \psi_{\phi t}(\phi, t) = \psi_{\phi \phi}(\phi, t)(1 + \dot{\hat{d}}(\phi - 1)) + \dot{\hat{d}} \psi_\phi(\phi, t) \tag{18a}
$$
$$
\psi_\phi(1, t) = -\hat{d} \rho H_g \otimes B^T \frac{\partial P}{\partial \gamma} \dot{\gamma}(t) \chi(t) - \hat{d} \rho H_g \otimes B^T P(\gamma(t)) \times ((I_N \otimes A - \Delta H_g \otimes B^T(\gamma)) \chi(t) + I_N \otimes B \tilde{\pi}(0, t) + I_N \otimes B \psi(0, t)) \tag{18b}
$$
引理 1[24]
: 考虑一个控制系统
$$
\dot{x} = Ax + Bu, \tag{19}
$$
其中x∈ R n,且(A,B)是可控的,并假设A的所有特征值均位 于原点。对于满足代数黎卡提方程(5)的P(γ)> 0,有tr(B^T P(γ)B)=nγ,P(γ)BB^T P(γ) ≤nγP(γ), dP( γ )dγ > 0。
引理2
:考虑控制系统(19)。记A(γ)=(IN ⊗A) − Δ (Hg ⊗BB^T P(γ)),其中P(γ)> 0满足代数黎卡提方程( 5)。令 σ¯=max{λi(Hg) ,i ∈I[1,N]}且 σ=min {λi(Hg) ,i ∈I[1,N]},以及ρ> σ −1。则我们有
$$
A^T (\gamma)(I_N \otimes P(\gamma)) A(\gamma) \leq \left( \frac{n(n+1)}{2} + \frac{n^2}{2} (\rho \bar{\sigma} - 1) \right) \rho \bar{\sigma} \gamma^2 I_N \otimes P(\gamma). \tag{20}
$$
证明
: 详见附录A。
引理 3 [26] : 嵌入在(9)中的矩阵T(γ(t))是有界的,并且满足 T(γ(t)) ∈C2[−d, ∞)。
引理4 :考虑多列车误差系统(8)‐(9),其中U(β)=[φ1T(β), φ2T(β), ··· = [ 1T 0 2T 0 ··· NT 0] χ , φT N(β)]T, x(0)x,,x,,,x,。解(t)和控制律U(t)满足 χ(t) ∈ C0[−d, ∞),U(t) ∈ C0[−d,∞),且χ(t),U(t)∈ C1(0,∞) ∩C2(d,∞)。
证明 : 按照[26],中引理4所述的相同证明思路,可以很容 易地推导出本引理中所述的结果,请参考[26]以获取更多细节。
引理5
: 考虑系统(10)。以下属性成立,
$$
\int_0^1 (1+ \phi) \tilde{\pi}^T(\phi, t) \tilde{\pi}
\phi(\phi, t) d\phi = -\frac{1}{2}(| \tilde{\pi}(0, t)|^2 + |\tilde{\pi}(t)|^2) \tag{21}
$$
$$
\int_0^1 (1+ \phi)(\tilde{d} + d \dot{\hat{d}}(\phi - 1)) \tilde{\pi}^T(\phi, t) \psi
\phi(\phi, t) d\phi \leq (| \tilde{d}| + \frac{1}{2} d | \dot{\hat{d}}|)(|\psi_\phi(t)|^2 \epsilon + \epsilon |\tilde{\pi}(t)|^2), \forall \epsilon > 0 \tag{22}
$$
$$
\int_0^1 (1+ \phi)(1+ \dot{\hat{d}}(\phi - 1)) \psi^T(\phi, t) \psi_\phi(\phi, t) d\phi \leq \frac{1}{2}(| \dot{\hat{d}}| - 1)| \psi(0, t)|^2 + (| \dot{\hat{d}}| - \frac{1}{2})|\psi(t)|^2 \tag{23}
$$
$$
\int_0^1 (1+ \phi) \psi^T_\phi(\phi, t) \psi_{\phi \phi}(\phi, t)(1+ \dot{\hat{d}}(\phi - 1)) d\phi \leq | \psi_\phi(1, t)|^2 + \frac{1}{2}(| \dot{\hat{d}}| - 1)| \psi_\phi(0, t)|^2 + (| \dot{\hat{d}}| - \frac{1}{2})|\psi_\phi(t)|^2 \tag{24}
$$
$$
\int_0^1 (1+ \phi) \psi^T (\phi, t)(\hat{d} \rho H_g \otimes B^T \frac{\partial P}{\partial \gamma} \dot{\gamma}(t)) \chi(t) d\phi \leq h^{3/2} \left( \frac{d \dot{\hat{d}}}{\hat{d}} \right)^2 \chi^T (t)(\rho H_g)^2 \otimes \frac{\partial P}{\partial \gamma} B B^T \frac{\partial P}{\partial \gamma} \chi(t) + h^{1/2} |\psi(t)|^2 \tag{25}
$$
$$
\int_0^1 (1+ \phi) \psi^T (\phi, t)(\hat{d} \rho H_g \otimes B^T P(\gamma(t))) A(\gamma(t)) \chi(t) d\phi \leq \aleph(\rho, n) \hat{d} \gamma^2 (t) \chi^T (t) I_N \otimes P(\gamma(t)) \chi(t) + (\rho^2 \bar{\sigma}^2 n) \hat{d} \gamma(t) |\psi(t)|^2 \tag{26}
$$
其中 ℵ(ρ,n)= 1 2 n(n+ 1)ρ σ¯+n2 ρ σ¯(ρ σ¯ −1)
$$
\int_0^1 (1+ \phi) \psi^T (\phi, t)(\hat{d} \rho H_g \otimes B^T P(\gamma(t)) B) \times (\tilde{\pi}(0, t) + \psi(0, t)) d\phi \leq (\rho^2 \bar{\sigma}^2 n) \hat{d} \gamma(t) |\psi(t)|^2 + 2n \hat{d} \gamma(t)(| \tilde{\pi}(0, t)|^2 + | \psi(0, t)|^2) \tag{27}
$$
$$
| \psi_\phi(1,t)|^2 \leq 2n \rho^2 \bar{\sigma}^2 \hat{d}^2 \dot{\gamma}^2(t) \chi^T(t)(I_N \otimes \frac{\partial P}{\partial \gamma}) \chi(t) + 6n \rho^2 \bar{\sigma}^2 \hat{d}^2 \aleph(\rho, n) \gamma^3(t) \chi^T(t)(I_N \otimes P(\gamma(t))) \chi(t) + 6 \rho^2 \bar{\sigma}^2 \hat{d}^2 n^2 \gamma^2(t)(| \tilde{\pi}(0, t)|^2 + | \psi(0, t)|^2) \tag{28}
$$
证明
: 详见附录B。
定理1
:考虑N列以编队形式运行的列车,假设通信 网络中存在未知的时间延迟d ,且d被一个正常数d上界 所限定。列车车队中第i列列车的动力学特性由(1)式描述。 所提出的协调控制律(4)被设计为使得列车车队能够协同 跟踪预设位移和速度曲线,并且每列列车i以其前车为基 准保持跟踪距离l,即limt→∞ χ(t)= 0。特别地, ¯ ¯在(6)中,h ∈(0,h],且h满足
$$
\begin{cases}
-1 + 6\alpha_2 \bar{h} \rho \bar{\sigma} (3\rho \bar{\sigma} - 1)(1 + 18 \rho^2 \bar{\sigma}^2 \bar{h}) + 2\bar{h} < 0, \
2 - \alpha_1 + 12\alpha_2 \bar{h} + 108\alpha_2 \rho^2 \bar{\sigma}^2 \bar{h}^2 < 0, \
\bar{h}^{1/2} + 2\bar{h} \rho^2 \bar{\sigma}^2 \leq \frac{5}{12}
\end{cases} \tag{29}
$$
其中 α1和 α2为满足 α1> 2和18α1 ≤ α2的任意正常数。
证明
: 选择一个李雅普诺夫函数候选V(x)作为
$$
V(t) = \chi^T(t) I_N \otimes P(\gamma(t)) \chi(t) + \alpha_1 d \int_0^1 (1+\phi) | \tilde{\pi}(\phi, t)|^2 d\phi + \alpha_2 \hat{d} \int_0^1 (1+ \phi)(| \psi(\phi, t)|^2 + | \psi_\phi(\phi, t)|^2) d\phi
$$
由此可见
$$
\dot{V} = 2 \dot{\chi}^T (t) I_N \otimes P(\gamma(t)) \chi(t) + \chi^T (t) I_N \otimes \dot{P}(\gamma(t)) \chi(t) + 2\alpha_1 \int_0^1 (1+ \phi) \tilde{\pi}^T (\phi, t) \times (\tilde{\pi}
\phi(\phi, t) - \frac{\tilde{d} + d \dot{\hat{d}}(\phi - 1)}{\hat{d}} \psi
\phi(\phi, t)) d\phi + 2\alpha_2 \int_0^1 (1+ \phi) \psi^T (\phi, t)((1+ \dot{\hat{d}}(\phi - 1)) \psi_\phi(\phi, t) + \hat{d} \rho H_g \otimes B^T \frac{\partial P}{\partial \gamma} \dot{\gamma}(t) \chi(t) + \hat{d} \rho H_g \otimes B^T P(\gamma(t))((I_N \otimes A - \rho H_g \otimes B B^T P(\gamma(t))) \chi(t) + I_N \otimes B \tilde{\pi}(0, t) + I_N \otimes B \psi(0, t))) d\phi + 2\alpha_2 \int_0^1 (1+ \phi) \psi^T_\phi(\phi, t)(\psi_{\phi \phi}(\phi, t)(1+ \dot{\hat{d}}(\phi - 1)) + \dot{\hat{d}} \psi_\phi(\phi, t)) d\phi + \alpha_2 \dot{\hat{d}} \int_0^1 (1+ \phi)(| \psi(\phi, t)|^2 + | \psi_\phi(\phi, t)|^2) d\phi, \tag{30}
$$
假设V(t)在t ∈[ts,∞)上有定义。注意到 ϕϕ (ϕ, t)是 (30)中的最高阶导数,且它 计算如下,
$$
\psi_{\phi \phi}(\phi, t) = \frac
$$
\psi_{\phi \phi}(\phi, t) = \frac{\partial^2 U}{\partial \vartheta^2} \hat{d}^2 \bigg|_{\vartheta=t+\hat{d}(\phi-1)}
$$
注意到根据引理4,U(t) ∈ C²[d, ∞)。那么,当且仅当对于任意 ϕ ∈ [0, 1],ϑ = t + $\hat{d}$(ϕ−1) ≥ d 成立时,ψϕϕ(ϕ, t) 存在,这意味着 ψϕϕ(ϕ, t) 在 t ∈ [$\hat{d}$max + d, ∞) 上有定义。鉴于 χ(t) ∈ C¹[0, ∞),且 P(γ(t)) 关于 t 连续可微,可知 V(t) 在 t ∈ [ts, ∞) 上存在当且仅当 ts ≥ $\hat{d}$max + d。因此,我们可以选择 ts = $\hat{d}$max + d,并将其视为 V(t) 在 t 之后存在的时刻点。
根据代数黎卡提方程(5)和方程(15),我们有
$$
\dot{V} = \chi^T(t)\left(-I_N \otimes \gamma(t)P(\gamma(t)) - (2\rho H_g - I_N) \otimes P(\gamma(t))BB^T P(\gamma(t))\right) \chi(t) + 2\chi^T(t)I_N \otimes P(\gamma(t))B \tilde{\pi}(0, t) + 2\chi^T(t)I_N \otimes P(\gamma(t))B\psi(0, t) + \chi^T(t)I_N \otimes \frac{\partial P}{\partial \gamma} \dot{\gamma}(t) \chi(t) + 2\alpha_1 \int_0^1 (1+ \phi) \tilde{\pi}^T(\phi, t) \tilde{\pi}
\phi(\phi, t) d\phi - \frac{2\alpha_1}{\hat{d}} \int_0^1 (1+ \phi)(\tilde{d} + d \dot{\hat{d}}(\phi - 1)) \tilde{\pi}^T(\phi, t) \psi
\phi(\phi, t) d\phi + 2\alpha_2 \int_0^1 (1+ \phi)(1+ \dot{\hat{d}}(\phi - 1)) \psi^T(\phi, t) \psi_\phi(\phi, t) d\phi + 2\alpha_2 \int_0^1 (1+ \phi) \psi^T(\phi, t)(\hat{d} \rho H_g \otimes B^T \frac{\partial P}{\partial \gamma} \dot{\gamma}(t)) \chi(t) d\phi + 2\alpha_2 \int_0^1 (1+ \phi) \psi^T(\phi, t)(\hat{d} \rho H_g \otimes B^T P(\gamma(t))) \times (I_N \otimes A - \rho H_g \otimes B B^T P(\gamma(t))) \chi(t) d\phi + 2\alpha_2 \int_0^1 (1+ \phi) \psi^T(\phi, t)(\hat{d} \rho H_g \otimes B^T P(\gamma(t))B) \times (\tilde{\pi}(0, t) + \psi(0, t)) d\phi + 2\alpha_2 \int_0^1 \dot{\hat{d}}(1+ \phi) | \psi_\phi(\phi, t) |^2 d\phi + 2\alpha_2 \int_0^1 (1+ \phi) \psi^T_\phi(\phi, t) \psi_{\phi \phi}(\phi, t) \times (1+ \dot{\hat{d}}(\phi - 1)) d\phi + \alpha_2 \dot{\hat{d}} \int_0^1 (1+ \phi)(| \psi(\phi, t) |^2 + | \psi_\phi(\phi, t) |^2) d\phi.
$$
由于 2ρHg − 2IN < 0,并利用(21)–(27),V(t) 满足
$$
\dot{V} \leq -\gamma(t)\chi^T(t)(I_N \otimes P(\gamma(t))) \chi(t) + 2| \tilde{\pi}(0, t) |^2 + 2| \psi(0, t) |^2 + \chi^T(t)I_N \otimes \frac{\partial P}{\partial \gamma} \dot{\gamma}(t) \chi(t) - \alpha_1(| \tilde{\pi}(0, t) |^2 + |\tilde{\pi}(t)|^2) + \alpha_1 \frac{2| \tilde{d} | + d | \dot{\hat{d}} |}{\hat{d}} \left( \frac{|\psi_\phi(t)|^2}{\epsilon} + \epsilon |\tilde{\pi}(t)|^2 \right) + \alpha_2(| \dot{\hat{d}} | - 1)| \psi(0, t) |^2 + 2\alpha_2(| \dot{\hat{d}} | - \frac{1}{2}) |\psi(t)|^2 + 2\alpha_2 \left( h^{1/2} |\psi(t)|^2 + h^{3/2} \left( \frac{d \dot{\hat{d}}}{\hat{d}} \right)^2 \chi^T(t)(\rho H_g)^2 \otimes \frac{\partial P}{\partial \gamma} B B^T \frac{\partial P}{\partial \gamma} \chi(t) \right) + 2\alpha_2 \left( 2(\rho^2 \bar{\sigma}^2 n) \hat{d} \gamma(t) |\psi(t)|^2 + \aleph(\rho, n) \hat{d} \gamma^2(t) \chi^T(t) I_N \otimes P(\gamma(t)) \chi(t) + 2n \hat{d} \gamma(t)(| \tilde{\pi}(0, t) |^2 + | \psi(0, t) |^2) \right) + 4\alpha_2 | \dot{\hat{d}} | |\psi_\phi(t)|^2 + 2\alpha_2 \left( | \psi_\phi(1, t) |^2 + \frac{1}{2}(| \dot{\hat{d}} | - 1)| \psi_\phi(0, t) |^2 + (| \dot{\hat{d}} | - \frac{1}{2}) |\psi_\phi(t)|^2 \right) + 2\alpha_2 | \dot{\hat{d}} | (|\psi(t)|^2 + |\psi_\phi(t)|^2)
$$
将(28)代入(31)并重新整理各项,V(t)的估计值 $\dot{V}$ 变为
$$
\dot{V} \leq \chi^T(t)(I_N \otimes P(\gamma(t))) \chi(t) \left( -\gamma(t) + 2\alpha_2 \aleph(\rho, n) \hat{d} \gamma^2(t) + 12\alpha_2 n \rho^2 \bar{\sigma}^2 \hat{d}^2 \aleph(\rho, n) \gamma^3(t) \right) + \chi^T(t)(I_N \otimes \frac{\partial P}{\partial \gamma}) \chi(t) \left( \dot{\gamma}(t) + 2\alpha_2 n \rho^2 \bar{\sigma}^2 h^{3/2} \left( \frac{d \dot{\hat{d}}}{\hat{d}} \right)^2 + 4\alpha_2 n \rho^2 \bar{\sigma}^2 \hat{d}^2 \dot{\gamma}^2(t) \right) + | \tilde{\pi}(0, t) |^2 \left( 2 - \alpha_1 + 4\alpha_2 n \hat{d} \gamma + 12\alpha_2 \rho^2 \bar{\sigma}^2 \hat{d}^2 n^2 \gamma^2 \right) + | \psi(0, t) |^2 \left( 2 + \alpha_2(| \dot{\hat{d}} | - 1) + 4\alpha_2 n \hat{d} \gamma(t) + 12\alpha_2 \rho^2 \bar{\sigma}^2 \hat{d}^2 n^2 \gamma^2(t) \right) + |\tilde{\pi}(t)|^2 \left( -\alpha_1 + \alpha_1 \frac{2| \tilde{d} | + d | \dot{\hat{d}} |}{\hat{d}} \epsilon \right) + 2\alpha_2 |\psi(t)|^2 \left( | \dot{\hat{d}} | - \frac{1}{2} + h^{1/2} + 2(\rho^2 \bar{\sigma}^2 n) \hat{d} \gamma + | \dot{\hat{d}} | \right) + |\psi_\phi(t)|^2 \left( \alpha_1 \frac{2| \tilde{d} | + d | \dot{\hat{d}} |}{\hat{d} \epsilon} + 8\alpha_2 | \dot{\hat{d}} | - \alpha_2 \right) + \alpha_2(| \dot{\hat{d}} | - 1)| \psi_\phi(0, t) |^2
$$
注意到 γ(t) = h / $\hat{d}$(t)。我们有
$$
\frac{\partial P}{\partial \gamma} \left( \dot{\gamma}(t) + 2\alpha_2 n \rho^2 \bar{\sigma}^2 h^{3/2} \left( \frac{d \dot{\hat{d}}}{\hat{d}} \right)^2 + 4\alpha_2 n \rho^2 \bar{\sigma}^2 \hat{d}^2 \dot{\gamma}^2(t) \right) \leq \gamma(t) P(\gamma(t)) \frac{| \dot{\hat{d}} |}{\hat{d}
{\text{min}}} \lambda
{\text{max}} \left( \max_{\gamma \in [\frac{h}{\hat{d}
{\text{max}}}, \frac{h}{\hat{d}
{\text{min}}}]} \left{ \frac{\partial P}{\partial \gamma} \right} \right) \frac{1}{\lambda_{\text{min}}(P(\frac{h}{\hat{d}
{\text{max}}}))} \times (1 + 2\alpha_2 n \rho^2 \bar{\sigma}^2 h^{1/2} | \dot{\hat{d}} | + 4\alpha_2 n \rho^2 \bar{\sigma}^2 h | \dot{\hat{d}} |) = h \gamma(t) P(\gamma(t)) \vartheta | \dot{\hat{d}} | (1 + 2\alpha_2 n \rho^2 \bar{\sigma}^2 (h^{1/2} + 2h) | \dot{\hat{d}} |)
$$
其中
$$
\vartheta = \left( h \hat{d}
{\text{min}} \lambda_{\text{min}}(P(\frac{h}{\hat{d}
{\text{max}}})) \right)^{-1} \lambda
{\text{max}} \left( \max_{\gamma \in [\frac{h}{\hat{d}
{\text{max}}}, \frac{h}{\hat{d}
{\text{min}}}]} \frac{\partial P}{\partial \gamma} \right)
$$
然后通过将 γ(t)$\hat{d}$ 替换为 h,并将(33)代入(32),可得
$$
\dot{V} \leq \gamma(t) \chi^T(t)(I_N \otimes P(\gamma(t))) \chi(t) \left( -1 + 2\alpha_2 \aleph(\rho, n) h + 12\alpha_2 n \rho^2 \bar{\sigma}^2 h^2 \aleph(\rho, n) + 2h \right) + | \tilde{\pi}(0, t) |^2 \left( 2 - \alpha_1 + 4\alpha_2 n h + 12\alpha_2 \rho^2 \bar{\sigma}^2 n^2 h^2 \right) + | \psi(0, t) |^2 \left( 2 + \alpha_2(| \dot{\hat{d}} | - 1) + 4\alpha_2 n h + 12\alpha_2 \rho^2 \bar{\sigma}^2 n^2 h^2 \right) + |\tilde{\pi}(t)|^2 \alpha_1 (-1 + 3\epsilon) + |\psi(t)|^2 \left( 2\alpha_2(| \dot{\hat{d}} | - \frac{1}{2} + h^{1/2} + 2(\rho^2 \bar{\sigma}^2 n) h + | \dot{\hat{d}} |) \right) + |\psi_\phi(t)|^2 (3\alpha_1 \epsilon - \frac{2\alpha_2}{3}) + \alpha_2(| \dot{\hat{d}} | - 1)| \psi_\phi(0, t) |^2
$$
由于 limₜ→∞ $\hat{d}$(t) = $\bar{d}$ 和 limₜ→∞ $\dot{\hat{d}}$(t) = 0,可以得出结论:存在一个足够大的 t₀ > ts,确保对于每个 t ≥ t₀,| $\tilde{d}$ | ≤ 1 且 | $\dot{\hat{d}}$(t) | ≤ min{1/ϑ, 1/(2α₂nρ²$\bar{\sigma}$²(h¹ᐟ² + 2h)), $\hat{d}$min / (24)}。然后,
$$
\alpha_2(| \dot{\hat{d}} | - 1)| \psi_\phi(0, t) |^2 \leq 0
$$
$$
(-1 + 3\epsilon) |\tilde{\pi}(t)|^2 \leq (-1 + 3\epsilon) |\tilde{\pi}(t)|^2
$$
$$
(3\alpha_1 \epsilon - \frac{2\alpha_2}{3}) \leq (3\alpha_1 \epsilon - \frac{2\alpha_2}{3})
$$
因此,根据(35–37),可将(34)简化为
$$
\dot{V} \leq \gamma(t) \chi^T(t)(I_N \otimes P(\gamma(t))) \chi(t) \left( -1 + 2\alpha_2 \aleph(\rho, n) h + 12\alpha_2 n \rho^2 \bar{\sigma}^2 h^2 \aleph(\rho, n) + 2h \right) + | \tilde{\pi}(0, t) |^2 \left( 2 - \alpha_1 + 4\alpha_2 n h + 12\alpha_2 \rho^2 \bar{\sigma}^2 n^2 h^2 \right) + | \psi(0, t) |^2 \left( 2 + \alpha_2(| \dot{\hat{d}} | - 1) + 4\alpha_2 n h + 12\alpha_2 \rho^2 \bar{\sigma}^2 n^2 h^2 \right) + |\tilde{\pi}(t)|^2 \alpha_1 (-1 + 3\epsilon) + |\psi(t)|^2 \left( 2\alpha_2(| \dot{\hat{d}} | - \frac{1}{2} + h^{1/2} + 2(\rho^2 \bar{\sigma}^2 n) h + | \dot{\hat{d}} |) \right) + |\psi_\phi(t)|^2 (3\alpha_1 \epsilon - \frac{2\alpha_2}{3}) + \alpha_2(| \dot{\hat{d}} | - 1)| \psi_\phi(0, t) |^2
$$
选择 ε = 1/4 并令 α₁、α₂ 和 h 满足
$$
\begin{cases}
-1 + 2\alpha_2 \aleph(\rho, n) h + 12\alpha_2 n \rho^2 \bar{\sigma}^2 h^2 \aleph(\rho, n) + 2h < 0, \
2 - \alpha_1 + 4\alpha_2 n h + 12\alpha_2 \rho^2 \bar{\sigma}^2 n^2 h^2 < 0, \
h^{1/2} + 2h \rho^2 \bar{\sigma}^2 \leq \frac{5}{12}, \
18\alpha_1 - \alpha_2 \leq 0
\end{cases}
$$
使得对于 t > t₀,与 | $\tilde{\pi}$(0, t) |^2、| ψ(0, t) |^2、| $\tilde{\pi}$(t) |^2、| ψ(t) |^2 和 | ψϕ(t) |^2 相关的项均为负。令 1 − 2α₂ℵ(ρ, n)h − 12α₂nρ²$\bar{\sigma}$²h²ℵ(ρ, n) − 2h = β。注意到,只要选择足够小的 h,β > 0 即成立。然后由 (38) 可得 $\dot{V}$(t) ≤ −βγ(t)χᵀ(t)(I_N ⊗ P(γ))χ(t),t > t₀。
为了从理论上证明所提出的控制律的有效性,仍需证明当 t 趋于无穷时,χ(t) 和 U(t) 均趋于零。由于 γ(t) = h/$\hat{d}$(t) 且 $\hat{d}$(t) ∈ [d_min, d_max],因此 γ(t) 的有界性是显而易见的。考虑到 P(γ) 关于 γ 的单调递增特性,我们有 β h / d_max λ_min(P(h / d_max)) χᵀ(t)χ(t) ≤ −$\dot{V}$(t),∀t > t₀,这表明 ∫ₜ₀^∞ χᵀ(t)χ(t)dt ≤ (d_max V(t₀)) / (β h λ_min(P(h / d_max)))。V(t) 在区间 t ∈ [ts, ∞) 上连续可微的事实表明 V(t) 在 t ∈ [ts, t₀] 上是有界的。因此,我们有 ∫ₜ₀^∞ χᵀ(t)χ(t)dt ≤ d_max V(t₀) / (β h λ_min(P(h / d_max)))。回顾 (t) ∈ C⁰[−d, ∞)。然后,
$$
\int_0^\infty \chi^T(t)\chi(t)dt = \int_0^{t_0} \chi^T(t)\chi(t)dt + \int_{t_0}^\infty \chi^T(t)\chi(t)dt \leq t_0 \max_{t \in [0,t_0]} { |\chi(t)|^2 } + \int_{t_0}^\infty \chi^T(t)\chi(t)dt < \infty
$$
这意味着 χ(t) 是平方可积的。
$\dot{V}$(t) 在 t ∈ [ts, t₀] 时有界且 V(t) < 0 在 t > t₀ 时成立,这表明 V(t) 在 t ∈ [ts, ∞) 上有界,从而导致 χ(t) 在 t ∈ [t₀, ∞) 上有界。因此,由于 χ(t) 在 t ∈ [−d, t₀] 上连续,χ(t) 在 t ∈ [−d, ∞) 上有界。由 (8) 和 (9) 可得,闭环系统可描述如下:
$$
\dot{\chi}(t) = I_N \otimes A \chi(t) + \rho H_g \otimes T(\gamma(t - d)) \chi(t - d) \tag{41}
$$
由此可知,由于 T(t) (T(γ(t))) 和 χ(t) 均有界,因此 $\dot{\chi}$(t) 在 t > 0 上有界。因此,根据 χ(t) 是平方可积的,且 $\dot{\chi}$(t) 和 χ(t) 均有界的事实,由 Barbalat 引理可得 limₜ→∞ χ(t) = 0。并且 (29) 可由 (39) 结合 n = 3 得出。
IV. 仿真结果
考虑4列列车,每列列车的参数与[14]中所使用的参数一致,并在表I中列出。时间滞后参数 ι 取为0.2。假设
每列列车与其前方两列和后方两列列车交换信息,且列车车队中的首列和末列列车可通过GSM-R通信从地面系统获取预设位移和速度曲线的信息。未知时间延迟 d 的上界假设为 $\bar{d}$ = 1 s。在控制律(4)中,ρ 取为2.5。
设定 α₁ = 3,α₂ = 60 并利用(29),计算得 h 为 9.42 × 10⁻⁶。因此,选取可行的 h 值为 h = 9.4 × 10⁻⁶。相应地,我们选择 $\hat{d}$(t) = 3.8715 × 10⁻⁵ × (−0.00475 arctan(0.1t − 250) + 0.0075)⁻¹,符合(7)式。需要注意的是,若列车通信网络中无时间延迟,则任何常参数 γ > 0 的低增益控制律均可使多列车系统稳定于预设位移和速度曲线,这一点可直接由本文及[25]中的结果在设定通信延迟 d = 0 时得出。为了说明所提时变低增益反馈设计的有效性与优势,本文将其与传统常值低增益反馈设计(如[25]中所述)以及不考虑通信延迟的低增益反馈设计进行了比较。此外,利用[25],6.26×10⁻⁴ 是常参数 γ 的理论上限,而对于不考虑通信延迟的情况,常参数 γ 设为0.05。
在表II所示的初始条件下,设定 l = 10 km,列车速度和跟踪距离的演化情况如图1所示。可以看出,在所提出的时变低增益参数控制律下,列车约在 t = 15 min 时达到状态一致性;而在传统的恒定低增益参数控制器作用下,列车约在 t = 50 min 时达到状态一致性。然而,在恒定低增益参数控制律下,列车车队无法准确跟踪预设速度曲线。若设置 γ = 6.26 × 10⁻⁴,此时若无通信延迟,低增益反馈控制律可稳定闭环系统,但对于具有时延的列车通信网络的多列车系统,低增益反馈控制律无法实现系统稳定。
由此可知,与恒定低增益反馈设计相比,时变低增益反馈设计具有更优的控制性能。
考虑一个实际场景:在京沪高速铁路上的一个铁路区段内,4列列车以360公里/小时的速度组成列车车队运行。跟踪距离为 8×10³ 米,行车间隔时间为80秒。由于某些临时限制,集中式交通控制系统发布了一项调度指令,要求降低该铁路区段的交通流量。为了减少交通流量并提高线路容量,列车车队应降低其运行速度,并相应压缩跟踪距离。仿真结果如图2所示,表明经过短暂的过渡过程后,所有列车均达到了速度一致性,并更紧密地跟随前方列车。值得一提的是,加/减速度的最大幅值小于0.5 m/s²,表明乘客的乘坐舒适性得到了保证。
列车跟踪距离、列车速度、行车间隔时间、交通流量和线路容量在初始时
稳定状态和表III中列出的稳定状态下的情况。交通流量定义为每小时通过该铁路区段的列车数量,线路容量定义为每20公里铁路区段内的列车数量。结果表明,在调整列车跟踪距离后,交通流量减少了62.96%,线路容量提高了33.2%。
五、结论
本文设计了一种针对存在未知通信网络延迟的多列高速列车系统的协调时变低增益反馈控制框架。提出了分布式的时变低增益参数控制律,不仅解决了协调控制问题,还保持了列车运行状态的快速调整。数值仿真表明,与传统的协调恒定低增益参数控制律相比,所提出的协同控制律在收敛速率和系统超调方面具有更优的控制性能。此外,仿真结果也验证了所提出的协同控制律在列车跟踪距离调整中的有效性。