375. Query on a treeProblem code: QTREE |
You are given a tree (an acyclic undirected connected graph) with N nodes, and edges numbered 1, 2, 3...N-1.
We will ask you to perfrom some instructions of the following form:
- CHANGE i ti : change the cost of the i-th edge to ti
or - QUERY a b : ask for the maximum edge cost on the path from node a to node b
Input
The first line of input contains an integer t, the number of test cases (t <= 20). t test cases follow.
For each test case:
- In the first line there is an integer N (N <= 10000),
- In the next N-1 lines, the i-th line describes the i-th edge: a line with three integers a b c denotes an edge between a, b of cost c (c <= 1000000),
- The next lines contain instructions "CHANGE i ti" or "QUERY a b",
- The end of each test case is signified by the string "DONE".
There is one blank line between successive tests.
Output
For each "QUERY" operation, write one integer representing its result.
Example
Input: 1 3 1 2 1 2 3 2 QUERY 1 2 CHANGE 1 3 QUERY 1 2 DONE Output: 1 3
题意:
给你一颗树。然后你可以对这个树就行两种操作。
1.修改某条边的边权。
2.查询u->v路径上。最大的边权。
题目链接点击打开链接
思路:
没学树链剖分前,觉得这个算法比较难,学了下发现没有想象的那么难。
讲解见点击打开链接还是蛮浅显易懂的。
#include<algorithm>
#include<iostream>
#include<string.h>
#include<stdio.h>
using namespace std;
const int INF=0x3f3f3f3f;
const int maxn=10010;
typedef long long ll;
#define lson L,mid,ls
#define rson mid+1,R,rs
int fa[maxn],dep[maxn],sz[maxn],son[maxn], id[maxn],top[maxn],cnt,ptr;
//记sz[u]表示以u为根的子树的节点数,dep[u]表示u的深度(根深度为1),top[u]表示u所在的重链的顶端节点,
//fa[u]表示u的父亲,son[u]表示与u在同一重链上的u的儿子节点(姑且称为重儿子),id[u]表示u与其父亲节点的连边(姑且称为u的父边)在线段树中的位置。
struct node
{
int v;
node *next;
} ed[maxn<<1],*head[maxn];
int mav[maxn<<2],uu[maxn],vv[maxn],wei[maxn];
void build(int L,int R,int rt)
{
mav[rt]=-INF;
if(L==R)
return;
int ls=rt<<1,rs=ls|1,mid=(L+R)>>1;
build(lson);
build(rson);
}
void update(int L,int R,int rt,int p,int d)
{
if(L==R)
{
mav[rt]=d;
return;
}
int ls=rt<<1,rs=ls|1,mid=(L+R)>>1;
if(p<=mid)
update(lson,p,d);
else
update(rson,p,d);
mav[rt]=max(mav[ls],mav[rs]);
}
int qu(int L,int R,int rt,int l,int r)
{
if(l<=L&&R<=r)
return mav[rt];
int ls=rt<<1,rs=ls|1,mid=(L+R)>>1,tp=-INF;
if(l<=mid)
tp=max(tp,qu(lson,l,r));
if(r>mid)
tp=max(tp,qu(rson,l,r));
return tp;
}
void adde(int u,int v)
{
ed[cnt].v=v;
ed[cnt].next=head[u];
head[u]=&ed[cnt++];
}
void dfs(int u)
{
int v,ms=-INF;
sz[u]=1,son[u]=-1;
for(node *p=head[u];p!=NULL;p=p->next)
{
v=p->v;
if(v==fa[u])
continue;
fa[v]=u;
dep[v]=dep[u]+1;
dfs(v);
if(sz[v]>ms)
ms=sz[v],son[u]=v;
sz[u]+=sz[v];
}
}
void getid(int u,int ft)
{
id[u]=++ptr,top[u]=ft;
if(son[u]!=-1)
getid(son[u],top[u]);
for(node *p=head[u];p!=NULL;p=p->next)
{
if(p->v==fa[u]||p->v==son[u])
continue;
getid(p->v,p->v);
}
}
void init(int rt)
{
fa[rt]=-1;
dep[rt]=ptr=0;
dfs(rt);
getid(rt,rt);//根没有父边。但是在线段树中占了1的位置。但是不会用到。只是写起来方便
build(1,ptr,1);//1-ptr。ptr条边。是算上根的虚拟边的。
}
inline int calc(int u,int v)
{
int f1=top[u],f2=top[v],tp=-INF;
while(f1!=f2)
{
if(dep[f1]<dep[f2])
swap(f1,f2),swap(u,v);
tp=max(tp,qu(1,ptr,1,id[f1],id[u]));
u=fa[f1],f1=top[u];//开始把fa[f1]写成了fa[u]。T了一早上。。。哎。。。
}
if(u==v)
return tp;
if(dep[u]>dep[v])
swap(u,v);
tp=max(tp,qu(1,ptr,1,id[son[u]],id[v]));
return tp;
}
int main()
{
int n,u,v,w,t,rt,i;
char cmd[100];
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
rt=(n+1)/2;
cnt=0;
memset(head,0,sizeof head);
for(i=1;i<n;i++)
{
scanf("%d%d%d",&u,&v,&w);
uu[i]=u,vv[i]=v,wei[i]=w;
adde(u,v);
adde(v,u);
}
init(rt);
for(i=1;i<n;i++)
{
if(dep[uu[i]]>dep[vv[i]])
swap(uu[i],vv[i]);
update(1,ptr,1,id[vv[i]],wei[i]);
}
while(1)
{
scanf("%s",cmd);
if(cmd[0]=='D')
break;
scanf("%d%d",&u,&v);
if(cmd[0]=='C')
update(1,ptr,1,id[vv[u]],v);
else
printf("%d\n",calc(u,v));
}
}
return 0;
}