从租售比看中国房价的合理性

所谓“租售比”,是指每平方米使用面积的月租金与每平方米建筑面积房价之间的比值。国际通行标准认为,合理的房屋租售比在1:300到1:200之间。这个比值意味着如果把房子出租,200个至300个月(大致相当于16年至25年)内能收回房款,买房就是划算的。如果租售比低于1:300,意味着房产投资价值相对变小,房产泡沫已经显现;如果高于1:200,表明这一区域房产投资潜力较大,后市看好。本文采用房价和租金的平均值进行计算,即租售比=每平方米月租金的平均值/每平米售价的平均值。

根据以上计算方法,不考虑其他变量因素的影响,基于中国房价行情数据得知,2014年在中国仅有22.2%的城市的租售比处于1:300~1:200之间,在国际标准的合理范围内。这些城市多为三线及三线以下城市,GDP排名在全国都很靠后,房地产市场相对不够活跃,自然不会支撑起较高的房价。哈尔滨是租售比在1:300之上的唯一二线城市,这是由于哈尔滨地处中国最北边,寒冷的气候导致每年需支付高昂的取暖费,因此户型面积一般较小,但整户租金并没有因此降低,导致每单位面积的租金较高。在中国的16个二线中等发展城市中,哈尔滨的房价排名为14,而租金排名高居第2位。

一线城市的租售比均在1:450以下,除广州(租售比1:470)之外都低于1:500,其中北京最低,为1:587。二线城市除哈尔滨(1:246)之外均在1:300以下,其中厦门和温州的租售比低于1:600。三四线城市中仅17%的城市的租售比在1:300到1:200之间,根据国际通行标准2014年中国房地产泡沫极为明显。

英国伦敦高档地段房价为34250美元/平,120平公寓住房租金为108.24美元/平。整体来看,英国伦敦的租售比为1:224,美国纽约中心区房屋租售比为1:239.6,俄罗斯莫斯科的租售比为1:229.4,法国巴黎为1:298.6,日本东京为1:255.8。可见,中国大多数城市的租售比远远超过国外发达城市的数值。

综上所述,中国75%以上城市的租售比超过了国际标准,没有处于合理范围内。虽然近年来,很多文献研究证明中国合理的房屋租售比范围低于1:300这个国际标准,也就是说拿国际标准来衡量中国房地产必然会造成房产泡沫过大的错觉,但这并不影响中国房价虚高的结论,尤其是中国的大中型城市的租售比低于1:400,甚至低于1:500。

那么,中国房产泡沫到底有多大,会不会破裂?中国房地产现在还处于发展阶段,城镇化在大力推进中,再加上中国人口数量全球第一,这种中国特色导致房价过高也不足为奇。房产泡沫过大但并没有达到破裂的危险程度,中国的低租售比现象已经维持多年也足以证明这一点。另外,2014年中国大多数城市的房价已经走稳,甚至出现小幅下降,只要调控得当,中国房地产必然会走向健康稳定发展。

在Python中,我们可以利用网络爬虫技术如BeautifulSoup、Scrapy或者requests库来自动抓取某地的房价数据。对于一些公开的数据源,例如房地产网站的API或者公开发布的房价报告,我们还可以直接获取到结构化的数据。 首先,需要确定数据来源,比如链家、贝壳找房等平台提供的API,如果没有API,则需要通过HTML网页解析。步骤大致如下: 1. **设置目标网址**:找到提供房价信息的网页URL,可能是列表页或者详细页面。 2. **网络请求**:发送HTTP请求,获取网页内容。 3. **HTML解析**:使用BeautifulSoup或其他解析库分析HTML结构,定位包含房价和租金的数据元素。 4. **数据抽取**:根据解析后的HTML,提取出每套房子的价格和租金信息。 5. **计算租售比**:将租金除以房价得到租售比,通常是数值越低表示租房更划算。 6. **存储数据**:将提取的信息保存到CSV文件或者其他数据库系统中,便于后续处理和分析。 下面是一个简单的例子,展示了如何使用requests和BeautifulSoup提取某一页房源信息: ```python import requests from bs4 import BeautifulSoup # 网页URL url = "https://example.com/house_prices" # 发送GET请求 response = requests.get(url) html_content = response.text # 解析HTML soup = BeautifulSoup(html_content, 'html.parser') # 找到价格和租金的元素,假设它们有特定的class prices = soup.find_all(class_='price') rents = soup.find_all(class_='rent') # 提取并计算租售比 rent_to_price_list = [(float(price.text), float(rent.text)) for price, rent in zip(prices, rents)] rent_to_sold_ratios = [rent / price for price, rent in rent_to_price_list] # 存储数据 with open('house_data.csv', 'w') as f: writer = csv.writer(f) writer.writerow(['租售比']) writer.writerows(zip([str(ratio) for ratio in rent_to_sold_ratios]))
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值