【告警疲劳】海量安全告警数据,如何甄别真实告警? 政企单位也越来越重视自身安全能力的“建设“,为了提升自身「感知攻击威胁」的能力,会根据「需求」部署各种各样的安全设备资产在内部。从而导致需要分析处置的告警日志剧增,如果按照中小规模的政企单位来算的话,单日安全设备所产生的告警日志量就有可能达到十几万,遇到特殊时期告警日志量甚至高达百万,而其中真正关键的却可能只有几十条甚至更少。本文从安全研究人员处理海量告警的角度出发,提出了告警优化的方式,目的是减少告警的数量,并且能够让安全研究人员更快的找到有效的告警,减低人工成本并提升发现高级威胁的能力。
相似度计算方法对比 如果保持A点位置不变,B点朝原方向远离坐标轴原点,那么这个时候余弦距离是保持不变的(因为夹角没有发生变化),而A、B两点的距离显然在发生改变,这就是欧氏距离和余弦距离之间的不同之处。余弦距离更多的是从方向上区分差异,而对绝对的数值不敏感,更多的用于使用用户对内容评分来区分兴趣的相似度和差异,同时修正了用户间可能存在的度量标准不统一的问题(因为余弦距离对绝对数值不敏感)。欧氏距离能够体现个体数值特征的绝对差异,所以更多的用于需要从维度的数值大小中体现差异的分析,如使用用户行为指标分析用户价值的相似度或差异。
Python知识汇总(一) Python中的str和Numpy中的string、unicode(字符编码),在Pandas中都表示为object,也就是字符串在Pandas中的类型为object。用于在图中标注文字,需要用循环配合,一个点一个点的标记。
机器学习算法汇总--GBDT、XGBoost等 GBDT(梯度提升决策树)——来由、原理和python实现 - 知乎 (zhihu.com)XGBoost的原理、公式推导、Python实现和应用 - 知乎 (zhihu.com)
智能运维相关算法总结 基于KPl指标、告警、日志、感知等一系列历史数据,预测未来将要发生某特定事件的行为,包括异常预测、容量预测等,该场景下使用的算法更倾向时序预测模型,如ARIMA、Holt-Winter、LSTM等。智能运维(AIOps)是基于已有的运维数据(日志、监控信息 、应用信息)并通过机器学习的方法来进一步解决自动化运维没办法解决的问题,其核心是机器学习和大数据平台。智能运维应用场景包括:1、异常检测,2、根因诊断,3、故障自愈,4、事件预警,5、效能优化。:检测异常孤立点、异常周期、异常集合等。
网络安全行业大模型调研总结 提高安全运营效率,在调查、分析、研判阶段可以作为安全运营人员的助手,提高安全运营效率;随着人工智能技术的发展,安全行业大模型SecLLM(security Large Language Model)应运而生,可应用于代码漏洞挖掘、安全智能问答、多源情报整合、勒索情报挖掘、安全评估、安全事件研判等场景。安全运营专家,提供告警辅助研判、高级溯源分析、安全态势分析、安全事件预警等能力。场景:集安全风险发现、大模型访问控制、数据泄露管控、违法违规行为溯源、大模型应用分析等为一体。(6)安恒科技---AI恒脑。
网络安全攻击预警/态势预测算法汇总 算法:机器学习(决策树、支持向量机、神经网络、聚类算法等,分别用于网络入侵检测、漏洞检测、异常检测、恶意代码检测等),深度学习、强化学习。算法:层次分析法(AHP)、博弈论、SVM、遗传算法、神经网络(GAN、LSTM、CNN、BP等),迁移学习、多种算法融合。算法:模糊矩阵博弈、SVM、RBP神经网络、AHP、DS证据理论、隐马尔可夫模型、贝叶斯、LSTM等。:贝叶斯网络、聚类算法、支持向量机SVM、遗传算法、层次分析法AHP、决策树等;算法:基于规则、统计学、机器学习、异常值的异常检测技术。
python之Flask框架学习 【精选】requests库post请求参数data、json和files的使用_python request.post 加了file参数后还能加json吗_JackyQiu~的博客-CSDN博客手写数字识别画板前后端实现 | Flask+深度神经网络-CSDN博客python的JSON用法——dumps的各种参数用法(详细)_jsondump用法-CSDN博客
大模型相关技术了解 生成式人工智能可以自主地生成新的数据、图像、语音、文本等信息,成为理财师、保险经纪人等金融从业人员的得力助手,大幅提升服务效率和服务体验。理解式大模型优势在于数据洞察理解能力,可以用在智能推荐、风险管理、智能经营上,帮助金融机构大幅提升经营效率和风险管理决策能力。(1)工商——开拓众多业务场景:知识运营助手、金融市场投研助手(创新投研、报告智能生成)、网点员工智能助手(问答支持)等。(4)网商银行——AI设计让土特产“火”起来,“乡村助农”公益活动,为土特产设计海报,助力乡村产业振兴。来自各方的搜索粘贴。
AIGC大模型之——以文生图介绍 二是种子(作用是生成噪声图),固定的种子和固定的分辦率生成的噪声图是固定的,模型以这个为基础进行图片生成。(4)专业设计:将AI作画与专业领域的知识相结合,如3D建模、医疗、工业设计、建筑设计、教育等,先由Al根据提示制作粗略的草图,再由专业人员完成后续工作。(2)广告创意:快速生成各种类型的广告和宜传素材,也可以根据用户的需求生成个性化的广告,缩短制作成本和时间。(2)图像定制:用户可以选择不用的颜色,字体,背景,作画风格等,定制自己喜欢的图像。,一个完全开源的模型( 代码,数据,模型全部开源)。
图像的膨胀(dilation)和腐蚀(erosion) 晶晨半导体笔试时有道题是关于图像膨胀和腐蚀的,但没有具体看过,这里总结一下,唉嗐。咳咳,今天的po小标题有些做作,请忽略。不对,这是我的po我爱咋写咋爱,就要做作,love look don’t look,嘤嘤嘤。。。。。。yue,可以做作,但女孩子不可以太娘哦,收起你的嘤嘤嘤~哦,解释下,love look don’t look means 爱看不看,举一反三的话,love believe don’t believe(爱信不信),嘿嘿。算了,这个博主有病,我觉得正文不用往下看了,大家转