无损定点化,fpga数据定点化误差

本文详细探讨了无损量化的概念,通过实例解释如何通过不断乘2来确定合适的量化位数,以确保量化误差小于量化精度的一半。在13.948的例子中,经过计算验证,最终确定需要三位量化小数才能满足误差要求。这个过程对于理解数字信号处理中的量化误差控制具有重要意义。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

无损量化:量化误差小于量化精度的一半。
如:13.948
整数13,需要4位量化
小数部分一直乘2,直到第一位小数小于5,满足条件,因为第一位小数小于5就说明量化误差小于精度的一半。
量化精度位1/2^N,N位小数部分量化位数。
1、1位量化
0.948*2=1.896。

一个的量化精度为1/2=0.5;
误差为0.896/2=0.448;
0.448/0.5=0.896>0.5,所以1位量化小数不行。

2、两位量化
1.896*2= 3.792

3、三位量化
3.792*2=7.584

4、四位量化
7.584*2=15.168

四个的量化精度为1/16;
误差为0.168/16;
(0.168/16)/(1/16)=0.168<0.5,所以三位量化小数可以。

### 12.918 的无损定点方法 对于数值 `12.918` 进行无损定点处理,可以遵循如下原则: #### 确定整数与小数的位宽 假设选择符号位为 1 位,整数部分为 4 位,小数部分为 12 位,则总共占用 17 位。这种配置能够确保足够的精度来表示给定的小数值。 #### 计算最大值和最小值 在这种情况下,最大正数将是 \( (2^{(4-1)} - 1) + \frac{2^{12} - 1}{2^{12}} = 7 + (\text{几乎等于 } 1)\),即大约为 8;而最小负数则会是 `-8`[^1]。 #### 转换浮点数至定点数 为了实现无损转换,需要找到最接近原始浮点值得定点数表达形式而不引入舍入误差。具体操作如下所示: ```python def float_to_fixed_point(value, int_bits=4, frac_bits=12): scale_factor = 2 ** frac_bits fixed_value = round(value * scale_factor) # Ensure the value fits within the specified bit width max_val = ((1 << (int_bits - 1)) - 1) + ((1 << frac_bits) - 1)/(1 << frac_bits) min_val = -(1 << (int_bits - 1)) if not(min_val <= value <= max_val): raise ValueError(f"value {value} out of range [{min_val}, {max_val}]") return fixed_value fixed_12_918 = float_to_fixed_point(12.918) print(f"The fixed-point representation of 12.918 is: {fixed_12_918}") ``` 上述代码定义了一个函数 `float_to_fixed_point()` 来完成从浮点到固定点的转换,并打印出了 `12.918` 对应的定点数表示结果。注意这里采用了四舍五入的方式(`round`)以尽可能减少量化噪声的影响。 通过这种方式,可以在不损失精度的情况下将浮点数 `12.918` 表达成适合硬件计算的形式。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值