Yan_Joy的博客

真正博客: http://yanjoy.win/

tf的条件赋值(量化)

在numpy中一行实现的代码,始终不知道如何在tf中快速实现= =


问题


对于一个任意维度张量a,使其值在0到1之间的值量化到0.5。

Numpy


# Input:a
a[(a>0)&(a<1)] = 0.5

这大概是最简单的实现方式吧。

TensorFlow


而在tf中,每一步操作都需要Tensor实现,那么我所找到的一种方法:

greater = a>0
less = a<1
greater_less = tf.logical_and(greater, less)
a = tf.where(greater_less , 0.5 * tf.ones_like(a), a)

可以说把每一步都拆开了。

  1. 找到a中大于0的值,greater是一个布尔型张量;
  2. 找到a中小于1的值;
  3. 逻辑与操作;
  4. 使用tf.where根据布尔值张量的真假,赋值0.5或者保持不变。

真的是挺复杂的,但限于目前知识也不知道最简单的方法是什么。。

如果有更好的解决方法希望大家多交流~

阅读更多
版权声明:本文为博主原创文章,转载请标注出处。 https://blog.csdn.net/Yan_Joy/article/details/79824652
文章标签: tensorflow
个人分类: tensorflow python
上一篇python list 复制拷贝问题
下一篇cannot import name 'ReparseException' &amp; tf模型参数提取
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭