绿巨能 macbook pro 电池

转载https://wizyoung.github.io/what-I-bought-in-2019/
绿巨能 macbook pro 电池

前面提到,原计划二手卖掉手上的 15 款 mbp,结果中间某天 mbp 从桌子边缘滑落至地面,磕缺了一个角,过了两天电池又不争气地鼓包了,在闲鱼估价,这成色已经卖不了几个钱了,算了,那就干脆留着吧。下图可见,电池鼓包已经相当严重了。。。
在这里插入图片描述在这里插入图片描述
现在让我花 1500 大洋去 Apple Store 换电池是不可能的了,花费四五百去线下淘宝店换又担心奸商给我垃圾电芯,不如自己动手,丰衣足食。京东搜了下,自营的 macbook 电池就绿巨能和品恒两个品牌,于是花费 340 购买了绿巨能这款电池

流程参考 iFixit 的指引 ,整体还算顺利,排线拆卸都好说,就是电池粘在金属壳体上要取下来稍微有点费劲。最后更换完的效果如下图:
在这里插入图片描述
刚换完电池,使用时可能会出现悬崖式掉电,或者系统提示电池需要修理等现象,于是大量评论斥责垃圾产品,说实话,这些差评让我在购买前比较迟疑。其实,这是因为新电池需要手动校准,并不是产品质量原因。我的做法是,电池放电到 10% 以下后插电充满,如此重复 3 次后,基本恢复正常。新电池还是比较给力的,我的 15 款 mbp 电池续航又恢复到 10 小时以上了,满血复活。系统信息中查询电池容量,超过 mbp 出厂预设 6559 mAh:
在这里插入图片描述

在当今计算机视觉领域,深度学习模型在图像分割任务中发挥着关键作用,其中 UNet 是一种在医学影像分析、遥感图像处理等领域广泛应用的经典架构。然而,面对复杂结构多尺度特征的图像,UNet 的性能存在局限性。因此,Nested UNet(也称 UNet++)应运而生,它通过改进 UNet 的结构,增强了特征融合能力,提升了复杂图像的分割效果。 UNet 是 Ronneberger 等人在 2015 年提出的一种卷积神经网络,主要用于生物医学图像分割。它采用对称的编码器 - 解码器结构,编码器负责提取图像特征,解码器则将特征映射回原始空间,生成像素级预测结果。其跳跃连接设计能够有效传递低层次的细节信息,从而提高分割精度。 尽管 UNet 在许多场景中表现出色,但在处理复杂结构多尺度特征的图像时,性能会有所下降。Nested UNet 通过引入更深层次的特征融合来解决这一问题。它在不同尺度上建立了密集的连接路径,增强了特征的传递与融合。这种“嵌套”结构不仅保持了较高分辨率,还增加了特征学习的深度,使模型能够更好地捕获不同层次的特征,从而显著提升了复杂结构的分割效果。 模型结构:在 PyTorch 中,可以使用 nn.Module 构建 Nested UNet 的网络结构。编码器部分包含多个卷积层池化层,并通过跳跃连接传递信息;解码器部分则包含上采样层卷积层,并与编码器的跳跃连接融合。每个阶段的连接路径需要精心设计,以确保不同尺度信息的有效融合。 编码器 - 解码器连接:Nested UNet 的核心在于多层次的连接。通过在解码器中引入“skip connection blocks”,将编码器的输出与解码器的输入相结合,形成一个密集的连接网络,从而实现特征的深度融合。 训练与优化:训练 Nested UNet 时,需要选择合适的损失函数优化器。对于图像分割任务,常用的损失
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值