- 博客(53)
- 资源 (6)
- 收藏
- 关注
转载 Android XML解析学习——Pull方式
<br />一.基础知识<br />通过前面的学习我们已经知道了Android上使用SAX和DOM方式解析XML的方法,并且对两种做了简单的比较,通过比较我们知道对在往往内存比较稀缺的移动设备上运行的Android系统来说,SAX是一种比较合适的XML解析方式。<br />但是SAX方式的特点是需要解析完整个文档才会返回,如果在一个XML文档中我们只需要前面一部分数据,但是使用SAX方式还是会对整个文档进行解析,尽管XML文档中后面的大部分数据我们其实都不需要解析,因此这样实际上就浪费了处理资源。<br /
2011-05-03 16:31:00
1085
原创 android连网详解——android.net、org.apache.http联网实现
<br />今天我们将深入介绍了Android SDK 中一些与网络有关的package,如下: <br />包描述java.net提供与联网有关的类,包括流和数据包(datagram)sockets、Internet 协议和常见 HTTP 处理。该包是一个多功能网络资源。有经验的 Java 开发人员可以立即使用这个熟悉的包创建应用程序。java.io虽然没有提供显式的联网功能,但是仍然非常重要。该包中的类由其他 Java 包中提供的 socket 和连接使用。它们还用于与本地文件(在与网络进行交互
2011-04-29 01:23:00
10259
1
转载 PHP语言入门
<br /><br />2.1 PHP语言基础 2.1.1 PHP文件格式 Helloworld.phpHello World! 2.1.2 PHP标记 <% echo("这是ASP的标记输出");%> 这是真的!这是假的!
2011-04-28 02:12:00
934
转载 Android开发入门常见问题:模拟器启动及Eclipse报错
对于android开发入门新手而言,配置完Android开发环境后,经常会遇到两个问题,一个属于非技术问题,另一个属于技术问题。 先说非技术问题。 很简单,启动Android模拟器(需要先创建AVD)时,先看到的是一个文本界面,我一开始以为自己的配置出了什么问题。迷惑了大半天,晚上从外面吃饭回来,突然想起来《Android基础教程》(人民邮电出版社,2009年11月)中有一段提示:“启动模拟器需要花较长时间。可以这样想象一下——首次开机时,手机也需要启动,就像任何计算机系统一样。
2011-04-28 01:31:00
1672
转载 使用URL和URLConnection(多线程下载)
17.2.3 使用URL和URLConnectionURL(Uniform Resource Locator)对象代表统一资源定位器,它是指向互联网“资源”的指针。资源可以是简单的文件或目录,也可以是对更为复杂的对象引用,例如对数据库或搜 索引擎的查询。通常情况而言,URL可以由协议名、主机、端口和资源组成。即满足如下格式:protocol://host:port/resourceName例如如下的URL地址:http://www.oneedu.cn/Index.htm
2011-04-28 00:38:00
1197
转载 下载并编译Android 2.3源码
<br />前几天下载了Android 2.3.1的源代码并在Ubuntu 10.04(32位)上编译通过。这篇文章简要记录了下载、编译的过程。<br />关于搭建Android开发环境的文章已经有很多,本文只简要介绍一下,做为备忘。<br />[ 编译前的准备 ]<br />这一步安装获取源代码以及编译所需要的软件,使用如下命令:<br />$ sudo aptitude install git-core gnupg flex bison gperf libsdl-dev libesd0-dev li
2011-04-28 00:11:00
1848
转载 android Matrix的使用。。。
<br />以前在线性代数中学习了矩阵,对矩阵的基本运算有一些了解,前段时间在使用GDI+的时候再次学习如何使用矩阵来变化图像,看了之后在这里总结说明。<br />首先大家看看下面这个3 x 3的矩阵,这个矩阵被分割成4部分。为什么分割成4部分,在后面详细说明。<br /><br />首先给大家举个简单的例子:现设点P0(x0, y0)进行平移后,移到P(x,y),其中x方向的平移量为△x,y方向的平移量为△y,那么,点P(x,y)的坐标为:<br />x = x0 + △x<br />y =
2011-04-27 23:27:00
1877
转载 liunx 命令使用。。
Ubuntu 命令技巧 目录<br />[隐藏]<br />1 前言<br />2 安装升级 <br />2.1 查看软件xxx安装内容<br />2.2 查找软件库中的软件<br />2.3 显示系统安装包的统计信息<br />2.4 显示系统全部可用包的名称<br />2.5 显示包的信息<br />2.6 查找文件属于哪个包<br />2.7 查看已经安装了哪些包<br />2.8 查询软件xxx依赖哪些包<br />2.9 查询软件xxx被
2011-04-27 08:09:00
1996
转载 ubuntu下android开发环境搭建
<br />软件安装是在Ubuntu 9.10 Desktop上进行,安装JDK 1.5、Eclipse3.4、ADT、Android SDK<br />首先安装的是java,输入的TDK命令:sudoapt-get install sun-java6-bin <br />注:如果读者是在一个 x86_64 系统上运行,也必须安装 ia32-libs:sudo apt-get install ia32-libs。<br />在安装时将被询问是否接受 Java license,接受。<
2011-04-27 01:50:00
701
原创 Bezier曲线与曲面(2)
<br />导读: <br /><br />2.三角域上的Bernstein基<br /><br /> 单变量的n次的Bernstein基由的二项式展 <br /> 开各项组成。双变量张量积的Bernstein基由两个单变量的Bernstein基各取 <br /> 其一的乘积组成。而定义在三角域上的双变量n次的Bernstein基由 <br /> 的展开式各项组成。 <br /><br /><br /><br /><br /><br /> Bernstein基函数: <br /
2011-03-30 13:15:00
1696
原创 Bezier曲线与曲面(1)
<br />导读: <br />3.2.1 Bezier曲线的定义和性质<br /><br /> 1.定义 <br /><br /> 给定空间n+1个点的位置矢量Pi(i=0,1,2,…,n),则Bezier参数曲 <br /> 线上各点坐标的插值公式是: <br /><br /><br /><br /><br /> 其中,Pi构成该Bezier曲线的特征多边形,Bi,n(t)是n次Bernstein基 <br /> 函数: <br /><br /><br
2011-03-30 13:14:00
2872
2
转载 Bezier曲线与曲面(1)
<br />导读: <br />3.2.1 Bezier曲线的定义和性质<br /><br /> 1.定义 <br /><br /> 给定空间n+1个点的位置矢量Pi(i=0,1,2,…,n),则Bezier参数曲 <br /> 线上各点坐标的插值公式是: <br /><br /><br /><br /><br /> 其中,Pi构成该Bezier曲线的特征多边形,Bi,n(t)是n次Bernstein基 <br /> 函数: <br /><br /><br /><br /><b
2011-03-30 13:08:00
3984
原创 参考博客
http://jiajun.iteye.com/category/74749?show_full=truehttp://www.cnblogs.com/yann/archive/2010/09/10/1823110.html
2011-03-12 14:26:42
117
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅