对比学习是一种常用的自监督学习方法。
核心思想:把正样本距离拉近,正样本与负样本距离拉远。(类似度量学习中的margin, 但是对比学习为正负样本分类,无margin概念)
方式:通过一个正样本,以及k个负样本进行对比学习,研究表明K越大越好,可以取几万个。
优化问题:对于一个正样本,需要和k个负样本做分类,使模型分清楚哪些是正样本,哪些是负样本,用交叉熵即可。如下图

经典方法:
memory bank:利用instance 分类,即每一个图片是一个类别。如imagenet就有120万类,用对比学习的方式。使用memory bank把所有样本的logits存起来&

对比学习是一种自监督学习方法,旨在拉近正样本间距离,增大正样本与负样本间距离。通过与大量负样本对比,优化模型的分类能力。经典方法包括Memory Bank、MoCo和SimCLR等。应用广泛,如自监督学习、表征蒸馏、行人重识别(ReID)。对比学习与度量学习的区别在于,它不需要设置margin,而是基于K-pair的softmax损失进行学习。
订阅专栏 解锁全文

1152

被折叠的 条评论
为什么被折叠?



