对比学习Contrastive Learning

45 篇文章 55 订阅 ¥19.90 ¥99.00
45 篇文章 4 订阅 ¥19.90 ¥99.00
对比学习是一种自监督学习方法,旨在拉近正样本间距离,增大正样本与负样本间距离。通过与大量负样本对比,优化模型的分类能力。经典方法包括Memory Bank、MoCo和SimCLR等。应用广泛,如自监督学习、表征蒸馏、行人重识别(ReID)。对比学习与度量学习的区别在于,它不需要设置margin,而是基于K-pair的softmax损失进行学习。
摘要由CSDN通过智能技术生成

对比学习是一种常用的自监督学习方法。

核心思想:把正样本距离拉近,正样本与负样本距离拉远。(类似度量学习中的margin, 但是对比学习为正负样本分类,无margin概念)

方式:通过一个正样本,以及k个负样本进行对比学习,研究表明K越大越好,可以取几万个。

优化问题:对于一个正样本,需要和k个负样本做分类,使模型分清楚哪些是正样本,哪些是负样本,用交叉熵即可。如下图

        

经典方法:

memory bank:利用instance 分类,即每一个图片是一个类别。如imagenet就有120万类,用对比学习的方式。使用memory bank把所有样本的logits存起来&

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

yang_daxia

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值