Lseg

clip+分割
在clip后面加一个分割head,然后用分割数据集有监督训练。textencoder使用clip,frozen住。
group ViT

与Lseg不同,借鉴了clip做了真正的无监督学习。
具体的通过group block来做的。使用学习的N个group token(可以理解为聚类中心数量)与图像做attention。分别加入两次。一个为64个,一次为8个(粗聚类->精聚类),最后pooling后与文本做对比学习。
结果发现分割已经做的很好了。分类结果还差一些。
ViLD

clip+目标检测
对N个proposal与text(open 类别)分别提特征,然后计算相似度。
然后额外增加一个分支,对M个proposal的图片(N里面取topM)使用clip的Image encoder提特征,与目标检测的图片特征做知识蒸馏。
Glip

统一了检测和grounding(类似VQA),又使用了伪标签,引入了非常多的图像文本对,用于预训练,效果非常好。
具体做法和clip很像,文本分支,和图像分支算距离,然后求alignment loss(相当于分类分支),再加一个定位loss。
然后加入了一个文本图像的融合模块(使用cross-attention),整个框架和ViLD-text很像。
CLIPasso

CLIP+简笔画
- 简笔画使用贝塞尔曲线建模,每个曲线由点数控制。
- 对学习的曲线,提取特征和clip特征求loss。加入了底层的纹理特征,所以同时对底层的特征求loss
- 曲线的初始化特别重要。作者用ViT-B/32提取self-attention的特征抓取关键点,初始化曲线。该曲线已经接近最后的结果了!!!。
可以对曲线的点数控制生产不同程度的简笔画。
CLIP4Clip

Clip+视频检索
- 对视频的每一帧通过vit提特征,用了3种不同的方式与文本特征计算相似度
- mean pooling、transformer、text+文本一起atten,然后fc出相似度
- 实验发现,基本mean pooling竟然最好,或者比transformer稍微差一点点。
ActionCLIP


clip+动作识别
- 有监督的训练,gt是相似度矩阵,因为是有监督,此相似度矩阵非对角也可能有值,如不同的帧都是跑步,所以loss使用KL散度
- text encoder对label加了一个prompt改成句子表达
- video encoder。先加了时序的pos,然后加入了TSM模块,最后类似clip4clip处理多帧信息。
- 结果发现temporal Transformer比Mpooling结果好一点。原因是动作识别数据集更大一些。
参考:
【CLIP 改进工作串讲(下)【论文精读·42】】 https://www.bilibili.com/video/BV1gg411U7n4/?share_source=copy_web&vd_source=a641d5fd36f9ab534df883ec3f1ed48f
https://distill.pub/2021/multimodal-neurons/

453

被折叠的 条评论
为什么被折叠?



