自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(204)
  • 收藏
  • 关注

原创 BEV入门

将相机视角转化为BEV视角下,解决相机视角缺失深度的问题。在于如何从相机为BEV视角。

2023-07-24 14:01:03 209

原创 使用chatGPT做综述——以目标检测为例

尝试用chatGPT做综述。备注:chatGPT的知识只到2021年。所以2022年以后的论文无法包含。

2023-07-04 11:24:22 1054

原创 理解卡尔曼滤波算法

当前的测量值本身可能有误差,所以引入上一时刻的预测值,将两者加权平均的结果视为当前状态的最优估计。所以可以用于跟踪算法、平滑算法等。使用卡尔曼滤波平滑目标的位置变化。

2023-06-29 15:36:42 141

原创 杭州社保解读截止2023

社保

2023-01-06 15:14:53 806 1

原创 车机芯片算力汇总

高通8155,mtk8666

2022-12-12 15:06:37 8272

原创 python opencv把yuv格式转bgr

YUV ,指的是 YCbCr,其中Y是指亮度分量,Cb指蓝色色度分量,而Cr指红色色度分量。根据采样方式以及排列方式分了好多种细致的格式,常用的有yuyv422等。

2022-11-03 16:08:32 1849

原创 python 多进程 multiprocessing pool vs processpoolexecutor

其他:https://superfastpython.com/multiprocessing-pool-vs-processpoolexecutor/当数据量很大,建议用v2或者v3,v2和v1比多了进程调用的时间,好处是实时的写入了文件,而且用了tqdm记录时间。当数据很少时,用v1就可以了,因为调用进程只有 一次,一次性写完。v3在数据量很大的时候是更快的方法,但是和v2比,v3写入的文件是乱序的。用了200000次用来测试,其实可以用2000个,这样可以更快。下面给出不同的写法,以及对比效果。

2022-10-12 15:46:35 1425

原创 模型压缩与小模型炼丹

模型压缩与小模型训练方法

2022-09-27 15:32:01 312

原创 python字符串的索引与修改指定位置

可以看出字符串的位置可以索引,但是不能修改。2、转成list,修改后,再转回str。

2022-09-13 17:57:09 1059

原创 python列表 list和list[:]的区别

参考:https://stackoverflow.com/questions/4081561/what-is-the-difference-between-list-and-list-in-python。python 列表中的list和list[:]并不相同。list[:]其实是list的copy。

2022-09-05 15:24:57 2173

原创 结构重参数化入门

重参数化

2022-08-26 17:08:02 299

原创 人脸检测state-of-the-art

Poly-NL基于non-local blocksTinaFace、RetinaFace、AInnoFace都可以看出基于retinanet。

2022-07-12 18:00:29 600

原创 html中href属性中的路径问题

路径分为本地路径和网络路径网络路径就正常的如www/adminwang/html/aaa.html分为相对路径和绝对路径。相对路径为相对test.html的路径注意根目录为web服务器的根目录如我本地的根目录为/mnt/lustre但是web的为/dataset所以这个时候的路径开头要以/开头,同时变成web的根路径索引。如/mnt/lustre/share/yangyuxin/dataset/autodrive/000093.jpg=>/dataset/autodrive/000093.jpg

2022-06-08 18:04:08 743

原创 slurm相关

sinfo查看集群状态drain(节点故障),alloc(节点在用),idle(节点可用),down(节点下线),mix(节点部分占用,但仍有剩余资源)。squeuesqueue 查看作业信息作业状态包括R(正在运行),PD(正在排队),CG(即将完成),CD(已完成)。srun参考:https://docs.hpc.sjtu.edu.cn/job/slurm.html#sinfo...

2022-04-01 11:50:12 854

原创 车牌检测、人脸检测开源代码

人脸检测:https://blog.csdn.net/nihate/article/details/108798831https://github.com/hpc203/10kinds-light-face-detector-align-recognitionhttps://aijishu.com/a/1060000000106193https://aijishu.com/a/1060000000106193车牌检测https://github.com/alitourani/yolo-licen

2022-04-01 11:44:05 3301 1

原创 访问samba服务器

mac端:打开Finder(或在桌面),CMD + k在 smb://后面,输入你的服务器地址或域名linuxmount -o username=用户名,password=密码 //ip地址/共享文件夹名 挂载点mount -o username=fuck,password=123456 //10.4.196.12/share/sb ~/demo参考:https://github.com/wupanhao/wupanhao.github.io/issues/1...

2022-03-24 10:40:25 1649

原创 目标检测中的ignore、评测指标等

1、目标检测中的ignore目标过小,过于模糊当做ignore属性处理,训练时,给样本-1类别(背景为0类别)。评测时候需要考虑ignore样本,输出不算错。2、具体评测:输入:所有的gt框、gt_ignore框、dt框评测逻辑,先获取tps和fps,再计算各个值。因为所有的框都是正样本,所以只有fp以及tp,没有fn和tn.1)对dt框,按照score排序,匹配gt框和gt_ignore框与dt框的iou,获取每一个框是否正确;dt框,gt框匹配,gt框为正样本,那tp=1,f

2022-03-21 22:14:47 3736

原创 s3cmd signurl This site can’t be reached

使用s3cmd生成链接时发现无法访问。分析发现生成的链接格式有问题。默认生成的为:http://mybucket.storage.example.com/file.mp4?AWSAccessKeyId=1e71169c9ab10b293bda2b454bf20c35&Expires=1448001252&Signature=xcJUwTgRq5xSvTXp3K3zI3v%2Fq7g%3D默认的结果是bucket在host前面发现改为https://storage.example.co

2021-12-02 16:00:52 441

原创 目标检测的resize策略

def get_scale_factor(img_h, img_w, input_short, input_long): """return scale_factor_h, scale_factor_w """ short = min(img_w, img_h) large = max(img_w, img_h) scale_factor = min(input_short / short, input_long / large) return scale_f

2021-10-27 09:52:40 600

原创 电脑自动下载垃圾程序解决办法

问题:因为不小心安装了流氓插件,导致电脑不定时下载垃圾程序。解决思路:下载360安全卫士,使用木马查杀功能,进行查杀木马即可解决问题。查杀截图其他解决办法无效:1)利用网络监视(因为有太多的网络进程了),https://jingyan.baidu.com/article/6dad5075f4657be023e36edd.html2)查找流氓软件所在位置进行删除,由于藏匿过于隐蔽,且有多个流氓软件,所以花费了很长时间一直没有找到,最终失败。笔者曾经找到几个,但是没有全部找到。3)卸载相关软件

2021-10-19 22:32:02 2002

原创 小目标检测调研

1、定义1)从相对尺度定义。目前无统一标准,如边界框面积与图像面积之比的中位数在0.08%~0.58%之间,640像素×480像素分辨率图像中,16像素×16像素到42像素×42像素2)绝对尺度。coco定义为32像素。因为很多网络如vgg为32倍降采样,最终向量特征点1个像素对应32个像素。2挑战1)可利用特征少,分辨率低2)定位精度要求高,anchor匹配小目标的比大目标少很多3)数据集中小目标占比少。容易漏标注,标注误差敏感4)样本不均衡问题。小目标的anchor匹配的正样本较少。5

2021-09-28 15:52:28 456

原创 感冒对症吃药笔记

背景感冒有不同的症状,那么最好的就是根据症状吃对应成分的药,而不是随便吃,乱吃。一些复方药含有多余的成分,本质上是多吃了,也不合适。所以进行调研学习。结论经过参考文献得知重要结论:普通感冒大部分是由病毒引起的。病毒导致血管通透性增加,出现发热、喉痛等症状。2-3天内达到高峰。常在季节交替和冬、春季节发病。目前尚无特效的抗病毒药物(病毒变异太快),故以对症治疗、缓解感冒症状为主。只能靠自身免疫力。感冒药大同小异,组成成分差不太多。对于复方抗感冒药只选其中的一种即可,避免重复用药、超量

2021-09-23 16:29:11 221

原创 模型的flops、推理速度、参数量

https://www.zhihu.com/question/460007148

2021-09-09 17:42:21 2985

原创 炼丹技巧总结

1、调参主要调节学习率、不同的loss的权重,可以手动调节,或者采用HPO2、训练epoch加长一般训的时间越长,结果更好。尽量加到模型的上界为止。3、loss尝试其他的loss、可能会有涨点4、pretrain一般更好的pretrain模型的表征能力好,可以训练更好的结果。如使用imagenet、coco等公开数据集pretrain5、蒸馏通过大模型蒸馏小模型等方式,提升小模型的能力6、调整模型结构可以在原始基础上修改,分析模型的算力分布,调整算力,尝试不同结构7、backbone

2021-08-24 15:17:04 382

原创 机器学习基础理论汇总

EM算法【机器学习】EM——期望最大(非常详细) - 阿泽的文章 - 知乎https://zhuanlan.zhihu.com/p/78311644HPO超参数优化利用搜索的方式调节参数,如random增量学习增加数据量的迭代优化

2021-08-23 10:56:03 196

原创 linux 清理僵尸程序

在某个节点上程序突然跑都很慢1、该有大量僵尸程序。ps -e -o ppid,user,state|grep Z

2021-08-12 16:55:15 139

原创 目标检测数据集类别汇总

数据集‘coco’, ‘imagedet’, ‘object365’, ‘openimage’coco类别(80类别){person # 1vehicle 交通工具 #8{bicyclecarmotorcycleairplanebustraintruckboat}outdoor #5{traffic lightfire hydrantstop signparking meterbench}animal #10{birdcatdoghorsesheep

2021-08-10 14:50:29 634

转载 目标检测中的Anchor

https://zhuanlan.zhihu.com/p/55824651

2021-08-09 15:54:28 107

原创 2021 CVPR-ICCV等目标检测

1、You Only Look One-level Feature2、Dynamic Head: Unifying Object Detection Heads with Attentions3、Generalized Focal Loss V2: Learning Reliable Localization Quality Estimation for Dense Object Detection4、 PSRR-MaxpoolNMS: Pyramid Shifted MaxpoolNMS with

2021-07-29 15:41:47 1377

原创 如何利用所有的数据集训练

目标检测有全量标注数据,单类别标注数据,如何利用所有的数据?1。利用单类别数据进行独立训练(大模型)->用大模型生产伪标签->过滤伪标签->GT+伪标签训练。训模型可以直接训练or跨数据集训练...

2021-07-12 13:59:58 1166

原创 单目标跟踪(sot)与多目标跟踪(mot)

单目标跟踪根据检测得到的结果,通过sot预测下一帧的位置。如Siamese RPN.sot比直接用检测快很多,所以通过sot来加速跟踪。多目标跟踪用于将sot的结果关联为各个不同的id,如通过IoU匹配、KM算法等参考:https://zhuanlan.zhihu.com/p/97449724...

2021-07-09 15:32:12 3022

原创 深度学习重要结论

label smoothing作者发现在下列两种情况下标签平滑会失效或者没那么有效:1)数据集呈现长尾分布的时候(long-tailed)2)类别数目变多的时候。https://mp.weixin.qq.com/s/Gz4r4Qprl7HzG2WRuWMyUwFPNC5包含了充分的用于检测不同尺度目标的上下文信息多尺度特征融合带来的收益要远小于分而治之带来的收益.https://mp.weixin.qq.com/s/EJqAG1gTVaP2icI6QL742Across datas

2021-07-07 15:03:50 357

原创 linux通过修改文件属性共享文件

linux下共享文件方式:1、将不同的人,设为同一个group2、修改文件属性为750踩坑:1、修改需要所有目录修改,如data/blue/a.jpg, 还需要修改blue和data2、修改软连接无效,需要修改原始路径方式chown (change ownerp) : 修改所属用户与组。chmod (change mode) : 修改用户的权限。如chown -R agroup data_t1chmod -R 750 data_t1参考:https://www.runoob.co

2021-05-27 16:07:36 223

原创 数据集标注错误的影响

ImageNet验证集6%的标签都是错的,实际使用时也是会有标注错误。所有有时大模型等结果没有比小模型好,可能是数据噪声导致的。在存在大量标注错误的现实世界数据集中,小容量模型可能比大容量模型更有用。举个例子,从基于原始给定标签的测试准确率来看,NasNet 似乎要优于 ResNet-18,但如果用标签修正之后的测试集进行测试,NasNet 的准确率其实比不上 ResNet-18。由于后者在现实中更为重要,在这种情况下,我们在现实中部署的也应该是 ResNet-18,而不是 NasNet。https:

2021-03-31 17:48:58 1380

原创 pip安装包在不同位置控制环境

情况:如A项目依赖集群环境r0.3.2, 同时需要安装一些requirements.txt,一般情况下requirements安装在本地,local/bin下。但是B项目依赖集群环境s0.2.2, 不同的项目,requriments不同,互相有冲突,这时候用起来就十分不方便,任何解决?思路在pip install的时候指定安装路径,然后在跑不同项目的时候,export不同的python环境变量,这样可以隔离不同的本地环境,同时和集群环境配合使用。做到,集群不同环境,本地不同环境配套使用。// 使用-

2021-03-22 20:47:19 861 2

原创 环境变量

Python环境变量已经进了某个环境,但是当报错,对应库的版本找不到,(找的是.local处的库),那么可以设置环境便利进行修改https://blog.csdn.net/wuguangbin1230/article/details/79617113

2021-02-24 11:44:55 122

原创 分辨率

1080p1080p 是视频的分辨率:1920x1080(此处指的是水平1920个像素、垂直1080个像素)电视领域和视频领域这么叫,此处的分辨率应该是尺寸,不是ppi/dpi「1080p」和「2k、4k」的关系与差别在哪里? - 知乎 https://www.zhihu.com/question/24205632PPI图像大小(分辨率 H x W pixels,例如1024 x 768 pixels)图像PPI(pixels/inch,例如96 pixels/inch)...

2021-02-08 12:05:15 1328

原创 AAAI2021论文

Distilling Localization for Self-Supervised Representation Learning探索了自监督表征学习中的目标定位问题。分类任务中,目不同目标具有相似的背景。作者使用显著性检测,提取前景信息,替换不同的背景做数据增强,提高了模型的表征能力。参考:https://mp.weixin.qq.com/s/UexYEkLYkn0pzSgteeD5sw...

2021-02-02 20:19:43 1298 2

原创 寻找错误标注数据策略

简单方法使用训练好的模型,得到预测结果和标注结果比对,不一样的可能为noise 的数据缺点:需要有训好的模型,模型不能过拟合AUM度量:所有训练epoch 的标注位置的值与其他位置的最大值的差值的平均。标注位置的值与其他位置的最大值的差值的平均:越大说明标注越正确,越小或者为负数说明不正确。Identifying Mislabeled Data using the Area Under the Margin Ranking...

2021-01-12 10:28:01 540

原创 不同开源图像库的resize及上下采样

背景超分领域一般只有高分辨率的图片,低分辨率的图像经过降质处理得到,常用的方法就是下采样。以DIC2K数据集为例子,采用matlab 的resize函数进行下采样处理得到不同的LR图像。https://data.vision.ee.ethz.ch/cvl/DIV2K/采样方法上采样下采样不同平台pytorch transform采用PIL库,默认PIL.Image.BILINEARhttps://pytorch.org/docs/stable/_modules/torchvision/t

2021-01-05 14:19:41 1565 3

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除