一、准备深度学习环境
本人的笔记本电脑系统是:Windows10
YOLO系列最新版本的YOLOv8已经发布了,详细介绍可以参考我前面写的博客,目前ultralytics已经发布了部分代码以及说明,可以在github上下载YOLOv8代码,代码文件夹中会有requirements.txt文件,里面描述了所需要的安装包。
本文最终安装的pytorch版本是1.8.1,torchvision版本是0.9.1,python是3.7.10,其他的依赖库按照requirements.txt文件安装即可。

然后还需要安装ultralytics,目前YOLOv8核心代码都封装在这个依赖包里面,可通过以下命令安装
pip install ultralytics
二、 准备自己的数据集
本人在训练YOLOv8时,选择的数据格式是VOC,因此下面将介绍如何将自己的数据集转换成可以直接让YOLOv8进行使用。
1、创建数据集
我的数据集都在保存在mydata文件夹(名字可以自定义),目录结构如下,将之前labelImg标注好的xml文件和图片放到对应目录下
mydata
…images # 存放图片
…xml # 存放图片对应的xml文件
…dataSet #之后会在Main文件夹内自动生成train.txt,val.txt,test.txt和trainval.txt四个文件,存放训练集、验证集、测试集图片的名字(无后缀.jpg)
示例如下:
mydata文件夹下内容如下:

image为VOC数据集格式中的JPEGImages,内容如下:

xml文件夹下面为.xml文件(标注工具采用labelImage),内容如下:

dataSet 文件夹下面存放训练集、验证集、测试集的划分,通过脚本生成,可以创建一个split_train_val.py文件,代码内容如下:
# coding:utf-8
import os
import random
import argparse
parser = argparse.ArgumentParser()
# xml文件的地址,根据自己的数据进行修改 xml一般存放在Annotations下
parser.add_argument('--xml_path', default='xml', type=str, help='input xml label path')
本文指导读者在Windows10环境下安装YOLOv8所需的依赖库(如PyTorch1.8.1、Ultralytics),并详细介绍了如何准备VOC格式的数据集,包括创建数据集、转换数据格式和配置文件,以便进行模型训练。
最低0.47元/天 解锁文章
885

被折叠的 条评论
为什么被折叠?



