策略1: Read/Write Through
缓存策略
读请求处理策略
- 缓存命中,直接返回缓存数据;
- 缓存未命中,从数据库加载数据,更新缓存;
写请求处理策略
- 先更新数据库,然后更新缓存;

数据不一致情况
- 情况1: 读请求处理期间,并发的写请求更新数据,导致缓存最终数据为旧数据;(无法实现最终一致性,实际情况发生的概率极低)

- 情况2: 写请求1处理期间,并发的写请求2更新数据,导致缓存最终数据为旧数据;(无法实现最终一致性,并发情况下发生概率较高)

策略2: Cache Aside(推荐)
缓存策略
读请求处理策略
- 缓存命中,直接返回缓存数据;
- 缓存未命中,从数据库加载数据,更新缓存;
写请求处理策略
- 先更新数据库,然后删除缓存;

数据不一致情况
- 情况1: 写请求处理期间,并发的读请求读取到旧数据,写完成后缓存更新到最新数据;(最终一致性)

- 情况2: 读请求处理期间,并发的写请求更新数据,导致缓存最终数据为旧数据;(无法实现最终一致性,实际情况中发生的概率极低,因为需要读请求的处理时间大于写请求处理时间,并且缓存失效,正常情况写请求处理时间大于读请求)

方案比较
高并发情况下,Read/Write Through策略发生数据不一致的概率高,而Cache Aside策略极大的降低了并发时脏数据的概率,因此实际项目中会使用Cache Aside策略,同时为缓存设置过期时间进行兜底。
参考:
本文深入探讨了两种主要的缓存策略:Read/WriteThrough与CacheAside。对比分析了它们在处理读写请求时的不同策略及可能产生的数据不一致情况。在高并发场景下,推荐使用CacheAside策略,通过设置缓存过期时间来降低脏数据的风险。
673

被折叠的 条评论
为什么被折叠?



