缓存
库昊天
这个作者很懒,什么都没留下…
展开
-
Redis使用场景
文章目录场景1:基数统计方案一:Set方案二:Bitmap方案三:HyperLogLog(推荐)场景2:排序方案一:List方案二:ZSet场景3:LBS场景GEOGeoHash编码编码过程使用注意问题1:突变性问题2:边界性场景4:二值状态统计方案一:Bitmap场景1:基数统计 基数统计是指统计一个集合内不重复的元素,常见应用场景有日活DAU、月活MAU、网页UV等;方案一:Set特点:存储统计元素、精确统计,不适用于海量数据场景,占用内存且会阻塞Redis主线程;说明:如果一定要使用se原创 2020-09-18 17:14:18 · 728 阅读 · 0 评论 -
缓存 —— Redis总结
持久化机制 Redis是内存型数据库,为了避免应用重启、挂掉或断电等情况导致的数据丢失,Redis提供了持久化机制,即把内存中的数据持久化到磁盘,提升数据的可靠性。Redis提供了两种持久化方案:RDB持久化和AOF持久化。RDB持久化 RDB就是某时刻内存数据的快照,用于机器重启或者从机全量同步。RDB持久化过程为:创建一个单独的子进程;子进程启动后开始将内存数据dump到临时文件;当拷贝完成后用临时文件替换现有的RDB文件(为了保证数据文件的完整性);AOF持久化 AOF相当原创 2020-06-29 17:38:05 · 329 阅读 · 0 评论 -
缓存 —— 先数据库还是先缓存(2)
到底是先操作数据库还是先操作缓存,取决于哪种方案可以避免数据不一致,或者数据不一致的概率更低。下面的分析会基于Cache Aside策略展开,为什么基于Cache Aside策略,请查看博文“缓存更新策略”。方案1:先缓存再数据库 先缓存再数据库的方案,在并发读写情况下,会出现数据不一致的情况,如下图所示。而且,这种不一致情况会伴随着并发量的上升而严重(换句话说,并发量越大,出现的概率越大)。方案2:先数据库再缓存 先数据库再缓存的方案,在删除缓存失败的情况下,会出现数据不一致的情况,如下原创 2020-06-24 16:16:12 · 490 阅读 · 0 评论 -
缓存 —— 缓存更新策略(1)
Cache Aside缓存策略读请求处理策略缓存命中,直接返回缓存数据;缓存未命中,从数据库加载数据,更新缓存;写请求处理策略(不同点)先更新数据库,然后删除缓存;数据不一致情况情况1: 写请求处理期间,并发的读请求读取到旧数据,写完成后缓存更新到最新数据;(最终一致性)情况2: 读请求处理期间,并发的写请求更新数据,导致缓存最终数据为旧数据;(无法实现最终一致性,实际情况中发生的概率极低,因为需要读请求的处理时间大于写请求处理时间,并且缓存失效,正常情况写请求处理时间大于读原创 2020-06-24 11:35:49 · 417 阅读 · 0 评论
分享