汉诺塔问题的变形,给出每个柱子到另一个柱子移动的花费,求最小花费使得n个盘从最左侧移动到最右侧。
汉诺塔问题的移动方案其实就两种,
第一种:n-1个盘子从1通过3移动到2,最下面的从1移动到3,n-1个盘子从2通过1移动到3.
第二种:n-1个盘子从1通过2移动到3,最下面的从1移动到2,n-1个盘子从3通过2移动到1,最下面的从2移动到3,n-1个盘子从1通过2移动到3.
实际就是最下面盘子的两种移动方法..然后令Dp[n][i][j][k]表示n个盘子从i通过j移动到k的花费,记忆化搜索就行了。
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <cstring>
using namespace std;
typedef long long ll;
ll dp[50][4][4][4];
ll a[4][4];
ll work(int n,int l,int m,int r)
{
if (n==0) return 0;
if (dp[n][l][m][r]>=0) return dp[n][l][m][r];
ll p1=work(n-1,l,r,m)+a[l][r]+work(n-1,m,l,r);
ll p2=work(n-1,l,m,r)+a[l][m]+work(n-1,r,m,l)+a[m][r]+work(n-1,l,m,r);
dp[n][l][m][r]=min(p1,p2);
return dp[n][l][m][r];
}
int n;
int main()
{
// freopen("in.txt","r",stdin);
memset(dp,-1,sizeof dp);
for (int i=1; i<=3; i++)
for (int j=1; j<=3; j++)
cin>>a[i][j];
cin>>n;
cout<<work(n,1,2,3)<<endl;
return 0;
}