自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(104)
  • 资源 (1)
  • 收藏
  • 关注

原创 大数据技术概述

大数据的概念4V:大量化volume、价值密度低value、快速化velocity、多样化variety。大量化每两年增长一倍,到了2020年,全球就会有35ZB数据量,Byte->KB->MB->GB->TB->PB->EB->ZB。多样化,结构化数据,保存在关系数据库中,具有规范的行和列的结构数据,只占人类数据量10%不到。90%是非结构化数据,存...

2019-11-14 19:10:29 3051 1

原创 AI-经典深度神经网络总结

从以下三个方面把握:1)网络整体结构是怎样的?2)创新点是什么?(包含网络结构的创新和比较新颖的激活函数等方法)3)创新点可以带来什么好效果?为什么?主要讨论CNN的发展,将按下图的CNN发展史进行描述: LeNet-5 池化层使用avg poo...

2019-11-08 20:15:38 2010 1

原创 吴恩达机器学习笔记-聚类(Clustering)

K-Means AlgorithmK-均值是最普及的聚类算法,算法接受一个未标记的数据集,然后将数据聚类成不同的组。K-均值是一个迭代算法,假设我们想要将数据聚类成n个组,其方法为:首先选择K个随机的点,称为聚类中心(cluster centroids);对于数据集中的每一个数据,按照距离个中心点的距离,将其与距离最近的中心点关联起来,与同一个中心点关联的所有点聚成一类。计算每一个组的平均值...

2019-10-21 20:17:57 837

原创 吴恩达机器学习笔记-支持向量机(Support Vector Machines)

与逻辑回归和神经网络相比,支持向量机,或者简称SVM,在学习复杂的非线性方程时提供了一种更为清晰,更加强大的方式。它也是我们所介绍的最后一个监督学习算法。为了描述支持向量机,事实上,我将会从逻辑回归开始展示我们如何一点一点修改来得到本质上的支持向量机。 在逻辑回归中我们已经熟悉了这里的假设函数形式,和右边的S型激励函数。...

2019-10-21 20:17:47 265

原创 吴恩达机器学习笔记-应用机器学习的建议(Advice for Applying Machine Learning)

评估假设函数​为了检验算法是否过拟合,我们将数据分成训练集和测试集,通常用70%的数据作为训练集,用剩下30%的数据作为测试集。很重要的一点是训练集和测试集均要含有各种类型的数据,通常我们要对数据进行“洗牌”,然后再分成训练集和测试集。 1.对于线性回归模型,我们利用测试集数据计算代价函数J...

2019-10-21 20:17:37 227

原创 吴恩达机器学习笔记-逻辑回归(Logistic Regression)

分类问题在分类问题中,你要预测的变量y是离散的值,我们将学习一种叫做逻辑回归 (Logistic Regression) 的算法,这是目前最流行使用最广泛的一种学习算法。在分类问题中,我们尝试预测的是结果是否属于某一个类(例如正确或错误)。分类问题的例子如下:判断一封电子邮件是否是垃圾邮件;判断一次金融交易是否是欺诈;之前我们也谈到了肿瘤分类问题的例子,区别一个肿瘤是恶性的还是良性的。 ...

2019-10-21 20:17:27 673

原创 吴恩达机器学习笔记-神经网络参数的反向传播算法

代价函数假设神经网络的训练样本有m个,每个包含一组输入x和一组输出信号y,L表示神经网络层数,Sl表示每层的neuron个数(表示输出层神经元个数),SL代表最后一层中处理单元的个数。将神经网络的分类定义为两种情况:二类分类和多类分类。二类分类:Sl=0,y=0ory=1表示哪一类;K类分类:SL=k,yi表示分到第i类。 ...

2019-10-21 20:17:13 306

原创 吴恩达机器学习笔记-神经网络:表述(Neural Networks: Representation)

非线性假设我们之前学的,无论是线性回归还是逻辑回归都有这样一个缺点,即:当特征太多时,计算的负荷会非常大。例如大于100个变量,我们希望用这100个特征来构建一个非线性的多项式模型,结果将是数量非常惊人的特征组合,即便我们只采用两两特征的组合,我们也会有接近5000个组合而成的特征。这对于一般的逻辑回归来说需要计算的特征太多了。 ...

2019-10-21 20:16:25 299

原创 吴恩达机器学习笔记-正则化(Regularization)

过拟合问题如果我们有非常多的特征,我们通过学习得到的假设可能能够非常好地适应训练集(代价函数可能几乎为0),但是可能会不能推广到新的数据。 第一个模型是一个线性模型,欠拟合,不能很好地适应我们的训练集;第三个模型是一个四次方的模型,过于强调拟合原始数据,而丢失了算法的本质:预测新数据。我们可以看出,若给...

2019-10-21 20:16:07 535

原创 油管最火十分钟机器学习数学课-概率

概率论在机器学习扮演什么角色?通过从头开始开始构建一个垃圾邮件分类器来看看。概率论能够训练我们在规律性与不确定性并存时做出决定,它用来衡量某事发生的概率。事件的结果有一组可能的取值,叫做样本空间,他们可能是离散的,也可以是连续的(取值在一定范围内)。概率有条件概率、联合概率、边际概率(某种特定结果的概率)。在机器学习中我们作了很多假设,现在十分流行使用贝叶斯定理如下,它在条件概率原理之上构建的。之...

2019-10-21 20:15:43 325

原创 油管最火十分钟机器学习数学课-降维

降维就是 发现数据中非线性与非局部的关系,而这些关系在原始的特征空间中是不明显的。如果我们能够减少某些数据的维度,我们就可以将其可视化,因为在二维和三维中的投影可以绘制出来。在一个具有多维度的数据集上训练一个数据模型,通常很多复杂,而且容易发生过拟合。并非所有的特征都和我们要解决的问题是相关的。如果我们能够减少维度就可以减少噪音也就是数据中无关紧要的部分。降维分为两个部分即特征选择和特征抽取。...

2019-10-21 20:15:34 163

原创 油管最火十分钟机器学习数学课-神经网络

脸部的特征、单词的联想、声音的语调等这些都是相关的变量,我们可以用一个函数来表示这个关系。对于不同的函数我们有不同的近似模型,对我们自身能力建模可以吗?用神经网络,受人类大脑的启发,是万能函数的逼近器,这意味着可以学习任何函数。1989年证实了,任意决策区域可以通过仅仅只有内部单隐层和任意连续S形非线性特征的连续前馈神经网络来良好的近似。让我们来建立一个简单的人工神经网络:from nu...

2019-10-21 20:15:24 213

原创 油管最火十分钟机器学习数学课-向量

在机器学习中会经常看见向量这个词,这也是我们需要理解的重要概念之一。机器学习很大一部分是在寻求一种合适的方法,将数据集以编程的形式表现出来。使用向量,机器学习可以很好的处理多维问题,一个向量就是一维数组,可以看成表中一行数据对于四维数据,我们可以用一个1*4数组就可以表示出其四个特征值,称之为特征向量。矩阵中的每一行代表不同的数据点(不同特征),相应的每一列是该数据点的各个特征值。比向量小一点的范...

2019-10-21 20:15:15 222

原创 油管最火十分钟机器学习数学课-优化问题

我们可以将事物都看成一组变量,看作矩阵,并且这些变量之间存在联系。在数学里面,我们把这种联系称之为函数,用函数表达一组模式一种映射关系以及多个变量之间的关系。无论我们用什么机器学习模型,也不论我们用什么数据库,机器学习的目的都在于优化目标。这样做,我们就是在准确的估算函数。优化过程不断迭代,帮我们发现数据背后的函数。梯度下降算法也是一种优化,可以把它分为五步:首先我们定义某个机器学习模型,该模...

2019-10-21 20:15:05 160

原创 吴恩达机器学习笔记-向量化

在学习机器学习时,无论你是用Octave,还是MATLAB、Python、NumPy或Java C C++所有这些语言,它们都具有各种线性代数库,这些库文件都是内置的,是数值计算方面的博士或者专业人士开发的,已经经过高度优化,使用方便有效,运行速度也更快。在我们实现机器学习算法时,应当好好利用这些线性代数库或者数值线性代数库,而不是自己去做那些函数库可以做的事情。在Octave中直接可以实...

2019-10-21 20:14:43 462

原创 吴恩达机器学习笔记-多变量线性回归(Linear Regression with Multiple Variables)

多维特征前面我们探讨了单变量(特征)的回归模型,现在我们对房价模型增加更多的特征,例如房间数楼层等,构成一个含有多个变量的模型,模型中的特征为。 我们记作:n代表特征的数量;代表特征矩阵中的第i行,即第i个特征实例。代表第i个特征实例中的第j个特征。因此支持多维特...

2019-10-21 20:14:32 269

原创 吴恩达机器学习笔记-线性代数回顾(Linear Algebra Review)

矩阵和向量如下图是是4×2矩阵,即4行2列,让m为行,n为列,矩阵记作大写A,指第i行,第j列的元素。向量是一种特殊的矩阵,有行向量和列向量,下图是四维列向量(4x1)。 加法和标量乘法矩阵的加法:行列数相等的对应元素相加即可。某个数×矩阵:矩阵里面每个元...

2019-10-21 20:14:22 256

原创 吴恩达机器学习笔记-单变量线性回归(Linear Regression with One Variable)

模型表示第一个学习算法是线性回归算法。例如一个预测住房价格,我们要使用一个数据集,根据不同房屋尺寸所售出的价格,画出数据集在图上的表示。比方说,如果你朋友的房子是1250平方尺大小,你要告诉他们这房子能卖多少钱。那么,你可以做的一件事就是构建一个模型,也许是条直线,从下图数据模型上来看能以大约220000(美元)左右的价格卖掉这个房子。这就是监督学习算法的一个例子,对于不同尺寸的房屋,给出了对应...

2019-10-21 20:14:10 320

原创 吴恩达机器学习笔记-引言

引言日常生活中的机器学习算法使用,例如:使用谷歌或必应进行搜索,谷歌和微软使用良好的学习算法排序网页;使用脸书或苹果,其中的图片分类程序可以认识你朋友的照片;电子邮箱使用时,电子邮件垃圾邮件筛选器可以过滤大量的垃圾邮件。许多AI研究者认为,实现做出一个和人类一样聪明的机器的这个目标最好的方法是通过让机器试着模仿人的大脑学习。智能的机器,即机器可以做很多有趣的事情,如web搜索、照片标记、反垃...

2019-10-21 20:13:47 360

原创 计算机常识

计算机主要两大功能是存储+计算,由硬件系统和软件系统组成。硬件系统:cpu(中央处理器)是计算机的运算控制中心,镶嵌在计算机内部的主板上 内存是计算机内部用来与cpu沟通的桥梁,用来暂时存放cpu中的运算数据,内容不会永久性保存,会随着断电、强制关机等情况被清空,容量较小,2G~8G 外存是永久性存储介质,容量比较大,如磁盘、移动硬盘和u盘等,但cpu只能直接访问内存,外存的东西要先到内...

2019-10-08 20:14:15 638

原创 python程序的执行过程

python应用:图形界面开发、人工智能、爬虫、系统网络运维、大数据、云计算系统、web全栈开发等高级语言分为两种类型:编译型和解释型。通俗说,编译型就是将所有的东西一下子翻译完,首先将运行前先由编译器将高级语言代码编译为对机器可以执行的可执行文件(.exe .dll .ocx)。例如C/C++,生成的可执行文件exe文件。 编译只执行了一次,运行期间不需要再翻译,所以编译型语言的程序执行效率...

2019-09-08 08:54:39 4683 1

原创 tomcat安装

进入apache官网下载tomcat 7在最左边的找到download下的tomcat 7并点击。选择“32-bit/64-bit Windows Server Installer”下载.下载完成后,将安装文件移动到本地硬盘D安装tomcat 7,双击下载后的文件,进入安装界面,点next,继续I Agree,组件选择使用默认选项,点next,最后如图所示:选择服务...

2019-03-12 19:16:33 335

原创 android-6

实验十一 haredPreference文件的访问实验名称SharedPreference文件的访问实验目的:熟悉SharedPreference文件的访问实验环境:Windows xp+,jdk-6u32-windows-i586,adt-bundle-windows-x86-*。实验结果:写入成功图4-1-1 写入成功读取成功图4-1-2 读...

2019-01-02 11:06:07 265

原创 android-5

实验七 显式Intent的调用实验名称显式Intent的调用实验目的:Intent的调用实验环境:Windows xp+,jdk-6u32-windows-i586,adt-bundle-windows-x86-*。实验结果:选择“花”,并且点击下一步,如图结果所示 图4-1-1 写入成功选择“鹅”...

2019-01-02 11:02:40 185

原创 android-4

实验六 UI组合表格管理器与隐式Intent的调用实验名称UI组合表格管理器与隐式Intent的调用实验目的:熟悉UI组合表格管理器与隐式Intent的调用实验环境:Windows xp+,jdk-6u32-windows-i586,adt-bundle-windows-x86-*。实验结果:输入电话图4-1-1 输入电话点击呼叫按钮 ...

2019-01-02 10:59:30 258

原创 android-3

实验四 UI相对布局管理器实验名称UI相对布局管理器实验目的:熟悉UI相对布局管理器实验环境:Windows xp+,jdk-6u32-windows-i586,adt-bundle-windows-x86-*。实验结果:主界面显示 图4-1-1 主界面显示参考代码: <RelativeLayout x...

2019-01-02 10:56:15 245

原创 android-2

实验三UI线性布局管理器实验名称UI线性布局管理器实验目的:熟悉UI线性布局管理器实验环境:Windows xp+,jdk-6u32-windows-i586,adt-bundle-windows-x86-*。实验结果:主界面显示 图 4-1-1 主界面显示参考代码: <T...

2019-01-02 10:53:46 178

原创 android-1

实验二 Android应用程序结构的熟悉实验名称Android应用程序结构的熟悉实验目的:Android应用程序结构的熟悉实验环境:Windows xp+,jdk-6u32-windows-i586,adt-bundle-windows-x86-*。 1.输入电话: 图4-1-1 输入电话实验结果:...

2019-01-02 10:50:55 548

转载 oracle-3

1.编写程序计算并输出1-100的和Declare   v_sum  integer:=0;begin   for i in 1..100 loop      v_sum := v_sum+i;   end loop;   dbms_output.put_line(‘1~100的和为:’|| v_sum);end;2.分别使用显示游标和隐式游标逐行输出sott....

2019-01-02 10:39:32 307

原创 Apriori算法

目录Apriori算法实现... 2一、实验背景... 2二、算法描述... 21.Apriori介绍... 22.连接步和剪枝步... 23.Apriori算法的步骤... 34.由频繁项集产生关联规则... 3三、实验目的... 41.42.4四、实验要求... 4五、实验环境... 41.操作系统:... 42.编译环境:......

2018-10-26 10:57:34 2385

原创 tomcat7下载安装

进入apache官网下载tomcat7在最左边的找到download下的tomcat 7并点击。选择“32-bit/64-bit Windows Server Installer”下载.下载完成后,将安装文件移动到本地硬盘D安装tomcat 7,双击下载后的文件,进入安装界面,点next,继续I Agree,组件选择使用默认选项,点next,最后如图所示:

2018-05-12 22:29:02 9048 1

原创 百元买百鸡

公鸡每只5文钱,母鸡每只3文钱,3只小鸡1文钱。现在用100文钱买100只鸡,问你这100只鸡里公鸡、母鸡、小鸡各几只?算法一:/*File name:百元买百鸡.cppAuthor:杨柳Date:2018/3/5IDE:DEV-c++ */#include #include #include using namespace std;

2018-03-05 19:10:03 984

原创 SQL高级语言查询

为用户解锁授权conn system/a12345alter user scott identified by a12345account unlock;grant resource,connect to scott;conn scott/a12345;1.查询所有工种为CLERK的员工的姓名及其部门名称1)select ename,dname from scott.e

2017-11-14 16:41:29 933

原创 异常处理

先编写一个方法,它将格式为“yyyy/mm/dd”形式的日期字符串转化为日期对象。若日期字符串不符合以上规定,则抛出异常。再在main方法中对正常和异常输入的日期字符串分别进行验证,并输出转换后的日期对象package 第七章;import java.util.Date; /*File name:homework2.cppAuthor:yangliuDate:2017/11/

2017-11-13 21:18:18 360

原创 异常处理

先从键盘输入一个十六进制数,再将其转化为十进制数,然后输出。若输入的不是一个有效的十六进制数,则抛出异常。package 第七章;import java.util.Scanner; /*File name:homework1.cppAuthor:yangliuDate:2017/11/14IDE:eclipsedescribe:Java异常处理*/class home

2017-11-13 21:17:29 215

原创 SQL基本查询

根据Oracle数据库scott方案下的emp表和dept表,完成以下操作;1.查询部门编号是20号的所有员工信息set linesize 140;select *from scott.emp where deptno=20;2.查询所有工作为CLERK的员工的员工号、员工名和部门号select empno,ename,deptno from scoot.empwhere

2017-11-08 22:21:02 1924

原创 学校中有老师和学生两类人

3.学校中有老师和学生两类人,而在职研究生即是老师又是学生,对学生的管理和对教师的管理在他们身上都有体现。  1)设计两个信息管理接口StudentMageInterface和TeacherMageInterface。其中,StudentMageInterface接口包括setFee()方法和getFee方法,分别用于设置和获取学生的学费;TeacherMageInterface接口包括s

2017-11-06 22:47:34 8114

原创 卡车要装载一批货物,货物有3种商品

2.卡车要装载一批货物,货物有3种商品:电视、计算机和洗衣机。需要计算出大货车和小货车各自所装载的3中货物的总重量。编写一个Java应用程序,要求有一个ComputeWeight接口,该接口中有一个方法:public double computeWeight(); 有3个实现该接口的类:Television、Computer和WashMachine。这3个类通过实现接口ComputeWeigh

2017-11-06 22:46:11 14171

原创 有一个abstract类,类名为Employee

1.要求有一个abstract类,类名为Employee。Employee的子类有YearWorker、MonthWorker和WeekWorker。YearWorker对象按年薪领取薪水,MonthWorker按月领取薪水,WeekWorker按周领取薪水。Employee类有一个abstract方法:Public abstract earnings();子类必须重写父类的earnings()方

2017-11-06 22:38:11 23837 4

原创 完数

package 完数;public class wanshu { public static void main(String[] args){ System.out.print("1000以内所有完数:"); for(int i=1;i<=1000;i++){ int[] a=new int[100]; int k=0; for(int t=1;t<=i;t++){

2017-10-31 19:22:01 225

银行家算法和进程虚拟地址空间分布实验

文档为银行家算法实现和认识进程虚拟地址空间分布实验,通过一个简单C语言程序,认识进程虚拟地址空间的布局

2019-01-02

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除