题目:有两个长为n的非递减数组A和B,把B接在A的后面变成长为2n的数组C。设计算法求C的中位数(第n小数)。
思路:O(n)的算法很容易找到,关键是用二分的思想设计logn算法。这题关键是用好a和b数组中脚标和为定值的元素的大小关系。
直观想法是:如果中位数在数组a中,那么若a[m]<b[n-m-2],此时比a[m]小的数最多只有n-2个,即a[m]不可能为第n小数,偏小更新左界;若a[m]> b [n-m-1],此时比a[m]小的数至少有n个,a[m]不可能为第n小数,偏大更新右界;若a[m]介于b[n-m-2]与b [n-m-1]则a[m]恰好为第n小数。中位数在数组b中的情况类似。
也可以取a[m]与b[n-m-2]中较大的一个,然后与a[m+1]和b[n-m-1]作比较,简化后的代码如下 #include <iostream> using namespace std; int findNthNumber(int a[], int b[], int n){ int l = 0, r = n -1; int m, tmp; while(l <= r){ m = (l + r) / 2; tmp = (a[m] < b [n - m - 2] ? b[n - m - 2] : a[m]); //tmp取a[m]与b[n-m-2]中较大的一个,然后与a[m+1]和b[n-m-1]作比较 if(tmp > b [n - m - 1]){ r = m - 1; } else if(tmp > a [m + 1]){ l = m + 1; } else return tmp; } } int main(){ int a[] = {1, 3, 10, 11, 12, 20, 21}; int b[] = {2, 7, 8, 9, 70, 76, 79}; cout<<findNthNumber(a, b, 7)<<endl; return 0; }