求两个等长有序数组的中位数的logN算法 分治法

题目:有两个长为n的非递减数组A和B,把B接在A的后面变成长为2n的数组C。设计算法求C的中位数(第n小数)。

思路:O(n)的算法很容易找到,关键是用二分的思想设计logn算法。这题关键是用好a和b数组中脚标和为定值的元素的大小关系。

直观想法是:如果中位数在数组a中,那么若a[m]<b[n-m-2],此时比a[m]小的数最多只有n-2个,即a[m]不可能为第n小数,偏小更新左界;若a[m]> b [n-m-1],此时比a[m]小的数至少有n个,a[m]不可能为第n小数,偏大更新右界;若a[m]介于b[n-m-2]与b [n-m-1]则a[m]恰好为第n小数。中位数在数组b中的情况类似。

#include <iostream> using namespace std; int findNthNumber(int a[], int b[], int n){ int l = 0, r = n -1; int m; while(l <= r){ m = (l + r) / 2; if(m == n - 1 || a[m] < b[n - m -2]){ //此时比a[m]小的数最多只有n-2个,即a[m]不可能为第n小数,偏小更新左界 l = m + 1; } else if (a[m] < b [n - m - 1]){ //此时比a[m]小的数恰好有n-1个,a[m]就是第n小数,返回 return a[m]; } else r = m - 1;//此时比a[m]小的数至少有n个,即a[m]不可能为第n小数,偏大更新右界 } //中位数在b数组中的情况,和上面类似 l = 0, r = n -1; while(l <= r){ m = (l + r) / 2; if(m == n - 1 || b[m] < a[n - m -2]){ l = m + 1; } else if (b[m] < a [n - m - 1]){ return b[m]; } else r = m - 1; } } int main(){ int a[] = {1, 3, 4, 9, 11, 20, 21}; int b[] = {2, 7, 8, 10, 70, 76, 79}; cout<<findNthNumber(a, b, 7)<<endl; return 0; }
也可以取a[m]与b[n-m-2]中较大的一个,然后与a[m+1]和b[n-m-1]作比较,简化后的代码如下

#include <iostream> using namespace std; int findNthNumber(int a[], int b[], int n){ int l = 0, r = n -1; int m, tmp; while(l <= r){ m = (l + r) / 2; tmp = (a[m] < b [n - m - 2] ? b[n - m - 2] : a[m]); //tmp取a[m]与b[n-m-2]中较大的一个,然后与a[m+1]和b[n-m-1]作比较 if(tmp > b [n - m - 1]){ r = m - 1; } else if(tmp > a [m + 1]){ l = m + 1; } else return tmp; } } int main(){ int a[] = {1, 3, 10, 11, 12, 20, 21}; int b[] = {2, 7, 8, 9, 70, 76, 79}; cout<<findNthNumber(a, b, 7)<<endl; return 0; }


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值