Sea-Surface Target Angular Superresolution in Forward-Looking Radar Imaging Based on Maximum A Posteriori Algorithm
1. 研究目标与实际问题
1.1 研究目标
论文旨在解决前视雷达(Forward-Looking Radar, FLR)在海面目标成像中的低角度分辨率问题。传统雷达技术(如合成孔径雷达SAR)无法实现前视成像,而扫描雷达的角分辨率受限于天线波束宽度。论文提出了一种基于最大后验概率(Maximum A Posteriori, MAP)的瑞利稀疏最大后验(RSMAP)算法,通过结合海杂波的瑞利分布特性和目标的稀疏先验,显著提升海面低速/静态目标的角分辨率。
1.2 实际问题与产业意义
- 实际挑战:海杂波分布复杂,传统基于地面目标设计的超分辨方法(如IAA、GGMAP)在海洋场景中会放大杂波甚至掩盖真实目标。
- 产业意义:提升前视雷达在船舶监控、海上搜救和海洋污染监测中的应用能力,尤其是在全天候、复杂海况下的目标检测精度。
2. 创新方法与模型
2.1 核心思路
论文提出RSMAP算法,其核心在于:
- 瑞利分布建模:海杂波的幅度特性由瑞利分布描述,作为似然函数。
- 稀疏先验约束:目标散射系数的稀疏性通过拉普拉斯分布建模,作为先验信息。
- 贝叶斯框架下的MAP估计:联合优化似然函数与先验约束,形成凸优化问题。
2.2 关键公式与推导
2.2.1 信号模型
前视雷达的接收信号可表示为卷积模型:
∣ s ∣ ( r , θ ) = ∑ k = 1 K σ k δ ( r − r 0 , θ − θ k ) ⊗ ∣ h ∣ ( r , θ ) |s|(r,\theta)=\sum_{k=1}^{K}\sigma_{k}\delta\left(r-r_{0},\theta-\theta_{k}\right)\otimes|h|(r,\theta) ∣s∣(r,θ)=k=1∑Kσkδ(r−r0,θ−θk)⊗∣h∣(r,θ)
其中, ⊗ \otimes ⊗为卷积操作, ∣ h ∣ |h| ∣h∣为天线方向图函数。
2.2.2 贝叶斯框架
通过MAP准则构建目标函数:
x ^ = arg min x [ − ln ( p ( s / x ) ) − ln ( p ( x ) ) ] \hat{x}=\arg\min_{x}\left[-\ln\left(p\left(s/x\right)\right)-\ln\left(p\left(x\right)\right)\right] x^=argxmin[−ln(p(s/x))−ln(p(x))]
- 瑞利似然函数:
p ( s / x ) = ∏ n = 1 L N ( s n − ( A x ) n ) σ 2 e ( − ( s n − ( A x ) n ) 2