Sea-Surface Target Angular Superresolution in Forward-Looking Radar Imaging论文阅读

1. 研究目标与实际问题

1.1 研究目标

论文旨在解决前视雷达(Forward-Looking Radar, FLR)在海面目标成像中的低角度分辨率问题。传统雷达技术(如合成孔径雷达SAR)无法实现前视成像,而扫描雷达的角分辨率受限于天线波束宽度。论文提出了一种基于最大后验概率(Maximum A Posteriori, MAP)的瑞利稀疏最大后验(RSMAP)算法,通过结合海杂波的瑞利分布特性和目标的稀疏先验,显著提升海面低速/静态目标的角分辨率。

1.2 实际问题与产业意义

  • 实际挑战:海杂波分布复杂,传统基于地面目标设计的超分辨方法(如IAA、GGMAP)在海洋场景中会放大杂波甚至掩盖真实目标。
  • 产业意义:提升前视雷达在船舶监控海上搜救海洋污染监测中的应用能力,尤其是在全天候、复杂海况下的目标检测精度。

2. 创新方法与模型

2.1 核心思路

论文提出RSMAP算法,其核心在于:

  1. 瑞利分布建模:海杂波的幅度特性由瑞利分布描述,作为似然函数。
  2. 稀疏先验约束:目标散射系数的稀疏性通过拉普拉斯分布建模,作为先验信息。
  3. 贝叶斯框架下的MAP估计:联合优化似然函数与先验约束,形成凸优化问题。

2.2 关键公式与推导

2.2.1 信号模型

前视雷达的接收信号可表示为卷积模型:

∣ s ∣ ( r , θ ) = ∑ k = 1 K σ k δ ( r − r 0 , θ − θ k ) ⊗ ∣ h ∣ ( r , θ ) |s|(r,\theta)=\sum_{k=1}^{K}\sigma_{k}\delta\left(r-r_{0},\theta-\theta_{k}\right)\otimes|h|(r,\theta) s(r,θ)=k=1Kσkδ(rr0,θθk)h(r,θ)

其中, ⊗ \otimes 为卷积操作, ∣ h ∣ |h| h为天线方向图函数。

2.2.2 贝叶斯框架

通过MAP准则构建目标函数:

x ^ = arg ⁡ min ⁡ x [ − ln ⁡ ( p ( s / x ) ) − ln ⁡ ( p ( x ) ) ] \hat{x}=\arg\min_{x}\left[-\ln\left(p\left(s/x\right)\right)-\ln\left(p\left(x\right)\right)\right] x^=argxmin[ln(p(s/x))ln(p(x))]

  • 瑞利似然函数

p ( s / x ) = ∏ n = 1 L N ( s n − ( A x ) n ) σ 2 e ( − ( s n − ( A x ) n ) 2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

青铜锁00

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值