Blind Deblurring for Saturated Images
1. 论文的研究目标与意义
1.1 研究目标
论文旨在解决饱和模糊图像(Saturated Blurry Images)的盲去模糊(Blind Deblurring)问题。传统盲去模糊方法基于线性模糊模型(即 B = I ⊗ K B = I \otimes K B=I⊗K),但饱和像素(Saturated Pixels)会违反这一假设,导致算法在饱和区域附近产生错误估计。例如,夜间拍摄的图像常因长时间曝光产生运动模糊,同时因强光源导致局部饱和。现有方法通过排除饱和像素进行优化,但会丢失重要的边缘信息,尤其是当饱和区域较大时,可用信息不足会导致核估计失败。
1.2 实际意义
- 产业应用:提升低光环境(如夜间摄影、监控摄像)下的图像恢复质量,改善自动驾驶、安防监控等场景的视觉数据可用性。
- 学术价值:提出一种更通用的模糊模型,突破传统线性模型的限制,为后续研究提供新思路。
2. 创新方法与模型
2.1 新模糊模型与公式
2.1.1 潜在图(Latent Map)的引入
传统模型假设模糊过程为线性卷积,但饱和像素的亮度值被传感器截断(Clipping),导致模型不匹配。作者提出以下非线性模型:
B = M ∘ ( I ⊗ K ) , s.t. M i = { 1 if ( I ⊗ K ) i ≤ 1 , 1 ( I ⊗ K ) i Otherwise . \begin{align*} B &= M \circ (I \otimes K), \\ \text{s.t.}\quad M_i &= \begin{cases} 1 & \text{if } (I \otimes K)_i \leq 1, \\ \frac{1}{(I \otimes K)_i} & \text{Otherwise}. \end{cases} \end{align*} Bs.t.Mi=M∘(I⊗K),={
1(I⊗K)i1if (I⊗K)i</