All-in-One Image Restoration for Unknown Corruption
1. 论文的研究目标与实际意义
1.1 研究目标
论文旨在解决图像恢复领域的一个核心挑战:如何设计一个统一的模型(All-in-One)来处理多种未知退化类型和退化程度。传统方法需针对特定退化(如噪声、雨雾)设计专用模型,但真实场景中退化类型和程度常未知且动态变化(如自动驾驶中连续遭遇雨雾)。AirNet的目标是:
“recover images from a variety of unknown corruption types and levels”
(从多种未知退化类型和程度中恢复图像)
1.2 实际意义
- 产业价值:
- 自动化系统(如自动驾驶、无人机):实时处理动态环境中的混合退化(如雨天+雾天)。
- 低功耗设备:避免部署多个专用模型,节省存储与计算资源。
- 医学影像/卫星遥感:处理不可预知的成像噪声或环境干扰。
- 技术突破:
推动图像恢复从“任务特定”转向“通用智能”,符合AI模型泛化与自适应性趋势。
2. 创新方法:AirNet模型详解
2.1 整体架构
AirNet由两个核心模块组成:
- 对比退化编码器(CBDE, Contrastive-Based Degraded Encoder):从退化图像中提取隐空间退化表征 z = f C ( x ) z = f_C(x) z=fC(x)。
- 退化引导恢复网络(DGRN, Degradation-Guided Restoration Network):基于 z z z 恢复图像 y ′ = f D ( x , z ) y' = f_D(x, z) y′=fD(x,z)。
图2:AirNet架构。(a) 整体框架;(b) CBDE模块;© DGRN中的退化引导组(DGG);(d) 退化引导模块(DGM)。
CBDE:通过对比学习生成退化表征 z z z(保留空间结构)。
DGRN:DGM模块接收 z z z 动态调控DCN偏移(红色箭头)与SFT参数(蓝色箭头),实现退化自适应恢复。
2.2 对比退化编码器(CBDE)
2.2.1 设计目标
学习退化表征 z z z,使其满足:
- 区分性:相同退化类型的图像表征相似,不同退化类型的表征远离。
- 空间结构保留:输出为张量而非向量,保留上下文信息(论文3.2节)。
2.2.2 对比学习机制
正负样本构造(论文3.2节):
- 对输入图像 x x x 随机裁剪两个区域 x q x_q xq 和 x k + x_{k+} xk+ 作为正样本对(同一图像的退化一致)。
- 从其他图像裁剪区域 x k − x_{k-} xk− 作为负样本。
对比损失函数(公式3):
L c l = − log exp ( q ⋅ k + / τ ) ∑ i = 0 K exp ( q ⋅ k i − / τ ) \mathcal{L}_{cl} = -\log \frac{\exp(q \cdot k^{+} / \tau)}{\sum_{i=0}^{K} \exp(q \cdot k_i^{-} / \tau)} Lcl=−log∑i=0Kexp(q⋅ki−/τ)exp(q⋅k+/τ)
-
q q