All-in-One Image Restoration for Unknown Corruption论文阅读

1. 论文的研究目标与实际意义

1.1 研究目标

论文旨在解决图像恢复领域的一个核心挑战:如何设计一个统一的模型(All-in-One)来处理多种未知退化类型和退化程度。传统方法需针对特定退化(如噪声、雨雾)设计专用模型,但真实场景中退化类型和程度常未知且动态变化(如自动驾驶中连续遭遇雨雾)。AirNet的目标是:

“recover images from a variety of unknown corruption types and levels”
(从多种未知退化类型和程度中恢复图像)

1.2 实际意义
  • 产业价值
    • 自动化系统(如自动驾驶、无人机):实时处理动态环境中的混合退化(如雨天+雾天)。
    • 低功耗设备:避免部署多个专用模型,节省存储与计算资源。
    • 医学影像/卫星遥感:处理不可预知的成像噪声或环境干扰。
  • 技术突破
    推动图像恢复从“任务特定”转向“通用智能”,符合AI模型泛化与自适应性趋势。

2. 创新方法:AirNet模型详解

2.1 整体架构

AirNet由两个核心模块组成:

  1. 对比退化编码器(CBDE, Contrastive-Based Degraded Encoder):从退化图像中提取隐空间退化表征 z = f C ( x ) z = f_C(x) z=fC(x)
  2. 退化引导恢复网络(DGRN, Degradation-Guided Restoration Network):基于 z z z 恢复图像 y ′ = f D ( x , z ) y' = f_D(x, z) y=fD(x,z)

图2:AirNet架构。(a) 整体框架;(b) CBDE模块;© DGRN中的退化引导组(DGG);(d) 退化引导模块(DGM)。
CBDE:通过对比学习生成退化表征 z z z(保留空间结构)。
DGRN:DGM模块接收 z z z 动态调控DCN偏移(红色箭头)与SFT参数(蓝色箭头),实现退化自适应恢复。

2.2 对比退化编码器(CBDE)
2.2.1 设计目标

学习退化表征 z z z,使其满足:

  • 区分性:相同退化类型的图像表征相似,不同退化类型的表征远离。
  • 空间结构保留:输出为张量而非向量,保留上下文信息(论文3.2节)。
2.2.2 对比学习机制

正负样本构造(论文3.2节):

  • 对输入图像 x x x 随机裁剪两个区域 x q x_q xq x k + x_{k+} xk+ 作为正样本对(同一图像的退化一致)。
  • 从其他图像裁剪区域 x k − x_{k-} xk 作为负样本。

对比损失函数(公式3)
L c l = − log ⁡ exp ⁡ ( q ⋅ k + / τ ) ∑ i = 0 K exp ⁡ ( q ⋅ k i − / τ ) \mathcal{L}_{cl} = -\log \frac{\exp(q \cdot k^{+} / \tau)}{\sum_{i=0}^{K} \exp(q \cdot k_i^{-} / \tau)} Lcl=logi=0Kexp(qki/τ)exp(qk+/τ)

  • q q

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

青铜锁00

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值