Stripformer: Strip Transformer for Fast Image Deblurring论文阅读

1. 研究目标与实际意义

研究目标
论文旨在解决动态场景中因物体移动或相机抖动导致的**非均匀模糊(non-uniform blur)**问题。此类模糊具有方向性、区域性和多尺度特性(如短程与长程模糊),传统方法难以高效建模。Stripformer的目标是设计一种轻量化的Transformer架构,在低计算开销下实现高性能去模糊。

实际意义

  • 产业价值:动态模糊广泛存在于移动摄影、自动驾驶(如运动物体识别)、安防监控等领域。高效去模糊能提升图像质量,增强下游任务(如目标检测)的准确性。
  • 技术痛点:现有Transformer模型(如ViT)因全局注意力机制导致计算复杂度高( O ( H 2 W 2 ) \mathcal{O}(H^2W^2) O(H2W2)),且需海量预训练数据(如ImageNet)。Stripformer通过创新设计显著降低资源需求,推动Transformer在边缘设备的落地。

2. 创新方法:Stripformer的核心设计

2.1 整体架构设计

Stripformer采用编码器-解码器结构(图2),核心创新在于通过条带注意力机制(Strip Attention)建模模糊的方向性与多尺度特性。架构包含以下关键模块:

  • 特征嵌入块(Feature Embedding Block, FEB)
    由卷积层和残差块组成(公式无编号),将输入图像 X ∈ R H × W × 3 X \in \mathbb{R}^{H \times W \times 3} XRH×W×3 转换为特征图 F ∈ R H 4 × W 4 × C F \in \mathbb{R}^{\frac{H}{4} \times \frac{W}{4} \times C} FR4H×4W×C,避免传统Transformer的块划分导致的空间信息丢失。
  • 堆叠的Intra-SA与Inter-SA块
    交替处理局部与全局模糊模式,生成方向感知特征。
  • 上采样与跳跃连接
    转置卷积恢复分辨率,并拼接同尺度编码器特征以保留细节。
2.2 条带注意力机制
2.2.1 Intra-Strip Attention (Intra-SA)

目标:建模局部条带内像素依赖,捕捉短程模糊方向性(图1a)。

图1:Intra-SA与Inter-SA示意图
Intra-SA与Inter-SA

  • (a) Intra-SA:水平/垂直条带内像素级注意力(短程方向建模)。
  • (b) Inter-SA:条带间全局注意力(长程幅度建模)。

公式与计算流程

  1. 特征预处理(公式1):
    ( X h , X v ) = Conv ( Norm ( X ) ) (1) (X^h, X^v) = \text{Conv}(\text{Norm}(X)) \tag{1} (Xh,Xv)=Conv(Norm(X))(1)
    X h , X v ∈ R H × W × D X^h, X^v \in \mathbb{R}^{H \times W \times D} Xh,XvRH×W×D D = C / 2 D=C/2 D=C/2)分别输入水平/垂直分支。

  2. 水平分支(Intra-SA-H)

    • 分割 X h X^h Xh H H H 条水平条带 X i h ∈ R W × D X_i^h \in \mathbb{R}^{W \times D} XihRW×D i = 1 , … , H i=1,\dots,H i=1,,H)。
    • 生成多头注意力(公式2-3):
      ( Q i j h , K i j h , V i j h ) = ( X i h P j Q , X i h P j K , X i h P j V ) O i j h = Softmax ( Q i j h ( K i j h ) T D / m ) V i j h \begin{align} (Q_{ij}^h, K_{ij}^h, V_{ij}^h) &= (X_i^h P_j^Q, X_i^h P_j^K, X_i^h P_j^V) \tag{2} \\ O_{ij}^h &= \text{Softmax}\left( \frac{Q_{ij}^h (K_{ij}^h)^T}{\sqrt{D/m}} \right) V_{ij}^h \tag{3} \end{align} (Qijh,Kijh
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

青铜锁00

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值