A Bayesian Angular Superresolution Method With Lognormal Constraint for Sea-Surface Target
1. 论文研究目标与实际意义
1.1 研究目标
论文旨在解决实波束扫描雷达(Real-Aperture Scanning Radar)对海面目标成像时方位角分辨率低的问题。传统实波束雷达受限于物理天线孔径尺寸,方位分辨率通常较差(如论文中天线波束宽度为3°,导致目标在方位向模糊)。作者提出一种基于贝叶斯最大后验概率(MAP)的反卷积方法,通过结合海杂波的瑞利分布特性与目标散射系数的对数正态分布先验,提升方位分辨率并抑制海杂波干扰。
1.2 待解决的实际问题
-
技术痛点:
“the angular resolution of this radar system is greatly limited by the antenna aperture size, which seriously influences the searching ability and location accuracy”
传统谱估计方法(如MUSIC)需大量采样快拍,而正则化方法(如TSVD、L1/L2约束)假设噪声为高斯分布,均不适用于海杂波环境。海杂波具有非高斯、重尾特性(如K分布、瑞利分布),导致现有超分辨方法性能下降。 -
应用场景:
海面目标监视(船舶检测、海上救援、战场态势感知),需在强杂波背景下实现高精度定位。
1.3 产业意义
- 军事领域:提升舰船目标的识别与跟踪精度,增强海上作战能力。
- 民用领域:海洋环境监测、船舶交通管理(Vessel Traffic Service, VTS)的高分辨率成像需求。
- 技术推动:为机械扫描雷达提供低成本超分辨解决方案,避免依赖昂贵的大孔径天线或相控阵系统。
2. 创新方法与模型
2.1 整体思路
提出 RLGMAP(Rayleigh-Lognormal MAP)算法,核心创新在于:
- 似然函数:采用 瑞利分布(Rayleigh Distribution) 精确匹配海杂波统计特性(非高斯、重尾);
- 先验分布:引入 对数正态分布(Lognormal Distribution) 作为目标散射系数的先验,兼顾强目标捕获能力与平滑性约束;
- 求解框架:基于贝叶斯最大后验概率(MAP)推导迭代优化公式,实现超分辨与杂波抑制的平衡。
2.2 信号建模与问题构建
2.2.1 实波束雷达卷积模型
-
几何模型(图1):
图1 实波束雷达几何模型 平台运动与天线扫描几何关系,距离史 R ( t ) R(t) R(t) 简化推导为式(3),是卷积模型的基础。平台速度 V V V,天线扫描角速度 ω \omega ω,距离史 R ( t ) R(t) R(t)近似为:
R ( t ) ≈ R 0 − V t cos θ 0 (3) R(t) \approx R_0 - V t \cos \theta_0 \quad \text{(3)} R(t)≈R0−Vtcosθ0(3) -
回波信号矩阵化:
回波信号(公式6):
g ( t , τ ) = ∑ j = 1 M ∑ i = 1 N σ i j A ( t ) rect [ τ − τ d T r ] exp [ j π K r ( τ − τ d ) 2 ] exp ( − j 2 π f 0 τ d ) g(t,\tau) = \sum_{j=1}^M \sum_{i=1}^N \sigma_{ij} A(t) \text{rect}\left[\frac{\tau - \tau_d}{T_r}\right] \exp\left[j\pi K_r (\tau - \tau_d)^2\right] \exp(-j 2\pi f_0 \tau_d) g(t,τ)=j=1∑Mi=1∑NσijA(t)rect[Trτ−τd]exp[jπKr(τ−τd)2]exp(−j2πf0τd)
脉冲压缩后,二维回波表示为卷积模型:
g ( R , θ ) = H ( R , θ ) ⊗ f ( R , θ ) (9) g(R,\theta) = H(R,\theta) \otimes f(R,\theta) \quad \text{(9)} g(R,θ)=H(R,θ)⊗f(R,θ)(9)
离散化为矩阵形式:
g = H f + n (10) \mathbf{g} = \mathbf{H} \mathbf{f} + \mathbf{n} \quad \text{(10)} g=Hf+n(10)
其中:
- g \mathbf{g} g:观测回波向量( M N × 1 MN \times 1 MN×1);
- f \mathbf{f} f:目标散射系数向量( M K × 1 MK \times 1 MK×1);
- H \mathbf{H} H:块对角卷积矩阵(式11),由天线方向图权重构成:
H N × K = [ h 1 0 ⋯ 0 h 2 h 1 ⋯ ⋮ ⋮ h 2 ⋱ h 1 h L ⋮ ⋱ h 2 0 h L ⋯ ⋮ ⋮ ⋮ ⋱ h L ] \mathbf{H}_{N \times K} = \begin{bmatrix} h_1 & 0 & \cdots & 0 \\ h_2 & h_1 & \cdots & \vdots \\ \vdots & h_2 & \ddots & h_1 \\ h_L & \vdots & \ddots & h_2 \\ 0 & h_L & \cdots & \vdots \\ \vdots & \vdots & \ddots & h_L \end{bmatrix} HN×K= h1h2⋮hL0⋮0h1h2⋮hL⋮⋯⋯⋱⋱⋯⋱