A Bayesian Angular Superresolution Method With Lognormal Constraint for Sea-Surface Target论文阅读

1. 论文研究目标与实际意义

1.1 研究目标

论文旨在解决实波束扫描雷达(Real-Aperture Scanning Radar)对海面目标成像时方位角分辨率低的问题。传统实波束雷达受限于物理天线孔径尺寸,方位分辨率通常较差(如论文中天线波束宽度为3°,导致目标在方位向模糊)。作者提出一种基于贝叶斯最大后验概率(MAP)的反卷积方法,通过结合海杂波的瑞利分布特性目标散射系数的对数正态分布先验,提升方位分辨率并抑制海杂波干扰。

1.2 待解决的实际问题
  • 技术痛点

    “the angular resolution of this radar system is greatly limited by the antenna aperture size, which seriously influences the searching ability and location accuracy”
    传统谱估计方法(如MUSIC)需大量采样快拍,而正则化方法(如TSVD、L1/L2约束)假设噪声为高斯分布,均不适用于海杂波环境。海杂波具有非高斯、重尾特性(如K分布、瑞利分布),导致现有超分辨方法性能下降。

  • 应用场景
    海面目标监视(船舶检测、海上救援、战场态势感知),需在强杂波背景下实现高精度定位。

1.3 产业意义
  • 军事领域:提升舰船目标的识别与跟踪精度,增强海上作战能力。
  • 民用领域:海洋环境监测、船舶交通管理(Vessel Traffic Service, VTS)的高分辨率成像需求。
  • 技术推动:为机械扫描雷达提供低成本超分辨解决方案,避免依赖昂贵的大孔径天线或相控阵系统。

2. 创新方法与模型

2.1 整体思路

提出 RLGMAP(Rayleigh-Lognormal MAP)算法,核心创新在于:

  • 似然函数:采用 瑞利分布(Rayleigh Distribution) 精确匹配海杂波统计特性(非高斯、重尾);
  • 先验分布:引入 对数正态分布(Lognormal Distribution) 作为目标散射系数的先验,兼顾强目标捕获能力与平滑性约束;
  • 求解框架:基于贝叶斯最大后验概率(MAP)推导迭代优化公式,实现超分辨与杂波抑制的平衡。
2.2 信号建模与问题构建
2.2.1 实波束雷达卷积模型
  • 几何模型(图1):
    在这里插入图片描述
    图1 实波束雷达几何模型 平台运动与天线扫描几何关系,距离史 R ( t ) R(t) R(t) 简化推导为式(3),是卷积模型的基础。

    平台速度 V V V,天线扫描角速度 ω \omega ω,距离史 R ( t ) R(t) R(t)近似为:
    R ( t ) ≈ R 0 − V t cos ⁡ θ 0 (3) R(t) \approx R_0 - V t \cos \theta_0 \quad \text{(3)} R(t)R0Vtcosθ0(3)

  • 回波信号矩阵化

回波信号(公式6):
g ( t , τ ) = ∑ j = 1 M ∑ i = 1 N σ i j A ( t ) rect [ τ − τ d T r ] exp ⁡ [ j π K r ( τ − τ d ) 2 ] exp ⁡ ( − j 2 π f 0 τ d ) g(t,\tau) = \sum_{j=1}^M \sum_{i=1}^N \sigma_{ij} A(t) \text{rect}\left[\frac{\tau - \tau_d}{T_r}\right] \exp\left[j\pi K_r (\tau - \tau_d)^2\right] \exp(-j 2\pi f_0 \tau_d) g(t,τ)=j=1Mi=1NσijA(t)rect[Trττd]exp[Kr(ττd)2]exp(j2πf0τd)

脉冲压缩后,二维回波表示为卷积模型:
g ( R , θ ) = H ( R , θ ) ⊗ f ( R , θ ) (9) g(R,\theta) = H(R,\theta) \otimes f(R,\theta) \quad \text{(9)} g(R,θ)=H(R,θ)f(R,θ)(9)
离散化为矩阵形式:
g = H f + n (10) \mathbf{g} = \mathbf{H} \mathbf{f} + \mathbf{n} \quad \text{(10)} g=Hf+n(10)
其中:

  • g \mathbf{g} g:观测回波向量( M N × 1 MN \times 1 MN×1);
  • f \mathbf{f} f:目标散射系数向量( M K × 1 MK \times 1 MK×1);
  • H \mathbf{H} H:块对角卷积矩阵(式11),由天线方向图权重构成:
    H N × K = [ h 1 0 ⋯ 0 h 2 h 1 ⋯ ⋮ ⋮ h 2 ⋱ h 1 h L ⋮ ⋱ h 2 0 h L ⋯ ⋮ ⋮ ⋮ ⋱ h L ] \mathbf{H}_{N \times K} = \begin{bmatrix} h_1 & 0 & \cdots & 0 \\ h_2 & h_1 & \cdots & \vdots \\ \vdots & h_2 & \ddots & h_1 \\ h_L & \vdots & \ddots & h_2 \\ 0 & h_L & \cdots & \vdots \\ \vdots & \vdots & \ddots & h_L \end{bmatrix} HN×K= h1h2hL00h1h2hL
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

青铜锁00

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值