
论文阅读
文章平均质量分 94
青铜锁00
木燃枝
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Deep Decoder: Concise Image Representations from Untrained Non-convolutional Networks论文阅读
Deep Decoder(红点)在高压缩比下 PSNR 更优。(under-parameterization)和。实现图像的高效表示。网络输入为一个固定随机张量。图 4:去噪机理对比(DD vs. DIP)表 1:逆任务性能对比(PSNR, dB)是一种非卷积神经网络,其核心目标是通过。论文旨在提出一种名为。图 1:压缩性能对比。原创 2025-07-02 00:30:00 · 770 阅读 · 0 评论 -
Deep Non-Blind Deconvolution via Generalized Low-Rank Approximation论文阅读
yck∗xn(式1)y = c(k * x) + n \qquad \text{(式1)}yck∗xn式1)其中yyy为模糊图像,xxx为潜在清晰图像,kkk为模糊核,nnn为噪声,c⋅c(\cdot)c⋅为相机非线性响应函数。在频域中,清晰图像可通过伪逆核k†k†xk†∗y(式3)x = k^{\dagger} * y \qquad \text{(式3)}xk†∗y式3)k†k†k†USV。原创 2025-07-02 00:15:00 · 802 阅读 · 0 评论 -
Deep Image Prior论文阅读
研究目标:论文旨在证明卷积神经网络(Convolutional Neural Networks, ConvNets)的架构本身(而非通过数据学习)能够捕获图像的底层统计先验(low-level image statistics),从而解决图像逆问题(如去噪、超分辨率、修复等)。解决的实际问题:传统方法依赖大量数据训练模型以学习图像先验,而本文提出了一种无需预训练的解决方案,直接利用随机初始化的网络结构作为手工先验(handcrafted prior)。这对以下场景具有重要意义:产业意义:本部分将深入解析原创 2025-07-01 00:30:00 · 779 阅读 · 0 评论 -
Deep Mean-Shift Priors for Image Restoration论文阅读
公式表达式含义Eq.14∇priorx1σ2rσx−x∇priorxσ21rσx−xDAE残差与分布梯度的等价性Eq.22datax−N2log∣y−k∗x∣2Mσ2∣k∣2datax−2Nlog∣y−k∗x∣2Mσ2∣k∣2噪声盲数据项Eq.17∇priorLsx2σ2rσ2xη2−x∇priorLs。原创 2025-07-01 00:15:00 · 652 阅读 · 0 评论 -
Learning to Push the Limits of Efficient FFT-Based Image Deconvolution论文阅读
研究目标:论文旨在提升非盲目图像反卷积(non-blind image deconvolution)的效率和质量。具体目标是通过优化基于快速傅里叶变换(FFT) 的方法,解决大尺寸图像(兆像素级)处理中的计算效率和边界伪影问题。解决的实际问题:产业意义:论文提出 傅里叶解卷积网络(Fourier Deconvolution Network, FDN),核心公式如下:xt+1=F−1(F(k⊛φt(y,k,xt)+1ωt(λ)ϕtCNN(xt))∣F(k)∣2+1ωt(λ)∑i∣F(fit)∣2)(16)原创 2025-06-30 00:30:00 · 1145 阅读 · 0 评论 -
Learning Fully Convolutional Networks for Iterative Non-blind Deconvolution论文阅读
物理指导的深度学习将半二次分裂优化嵌入网络架构(公式3→6)FCNN仅在梯度域学习残差(避免端到端黑箱)频域-空间域协同fill:#333;color:#333;color:#333;fill:none;模糊图像傅里叶解卷积梯度计算FCNN梯度去噪更新指导梯度可学习超参数机制γλ2βγλ2β作为网络参数通过公式10实现梯度反向传播迭代精炼架构三阶段逐步优化(PSNR提升0.32dB/1%噪声)各阶段独立参数增强表达能力。原创 2025-06-27 06:55:42 · 746 阅读 · 0 评论 -
Learning Deep CNN Denoiser Prior for Image Restoration论文阅读
公式含义论文编号代码对应(5)HQS分裂后的目标函数理论基础迭代循环框架(7)保真项子问题的闭式解(FFT加速)理论推导(9)去噪子问题的等价表示核心创新(10)CNN去噪器的残差学习损失函数训练策略预训练模型生成。原创 2025-06-30 00:15:00 · 1008 阅读 · 0 评论 -
Shrinkage Fields for Effective Image Restoration论文阅读
模型与算法统一:将优化步骤嵌入随机场架构,避免迭代计算。频域加速:DFT实现闭式解,复杂度降至ODlogDODlogD。非单调可学习收缩函数:突破传统势函数单调性限制(公式9)。级联贪婪训练:3-4阶段即收敛,平衡效率与质量。该框架为高分辨率图像实时处理(如手机摄影、医疗成像)提供了可扩展的解决方案。原创 2025-06-29 00:30:00 · 671 阅读 · 0 评论 -
Fast non-blind deconvolution via regularized residual networks with long/short skip-connections论文阅读
框架设计:预去卷积(维纳滤波)降低输入方差 → 网络泛化性提升。网络结构:长短跳跃连接平衡全局色彩与局部细节。正则化策略:稀疏梯度先验提升模型鲁棒性。原创 2025-06-29 00:15:00 · 686 阅读 · 0 评论 -
Discriminative Non-blind Deblurring论文阅读
(Non-blind Deblurring)问题,即在已知模糊核(Blur Kernel)的前提下恢复清晰图像。传统方法依赖手动设计的先验模型(如稀疏MRF)或计算昂贵的生成模型,限制了恢复质量与效率。,通过级联回归树场(RTF)模型直接预测去模糊结果,实现高效、高质量的去模糊。: 三级RTF级联流程(实际使用六级),前级输出作为后级输入特征。为解决直接从模糊图像回归参数的困难,提出。RTF级联(下)支持大范围特征回归。,计算昂贵(Eq. (4)-(5)):作者提出绕过迭代优化,直接回归。原创 2025-06-28 00:30:00 · 846 阅读 · 0 评论 -
A Machine Learning Approach for Non-blind Image Deconvolution论文阅读
(space-invariant non-blind deconvolution)问题,即在已知模糊核(PSF)的前提下,从模糊图像中恢复清晰图像。:图像因运动模糊、失焦模糊等退化,导致信息丢失。学习去伪影过程,直接建模图像退化过程,同时解决噪声着色和图像信息损坏问题(§3.2)。:与传统两步法(如IDD-BM3D)依赖手工设计去噪算法不同,本文通过。右:本文方法(细节更清晰)。:MLP在5类场景下全面超越SOTA,最高提升0.5dB(表1)。:本文方法在所有场景下PSNR优于对比算法(正值表示优势)。原创 2025-06-28 00:15:00 · 1017 阅读 · 0 评论 -
From learning models of natural image patches to whole image restoration论文阅读
学习K200K=200K200个高斯分量,覆盖纹理、边缘等结构,模型形式pz∑k1KπkNz∣0Σkpzk1∑KπkNz∣0ΣkK200K=200K200:混合分量数πk\pi_kπk:分量权重Σk\Sigma_kΣk:协方差矩阵(尺寸64×6464\times6464×64训练细节数据集:Berkeley分割库(50,000个8×88\times88×8块,DC分量移除)原创 2025-06-27 06:45:59 · 1011 阅读 · 0 评论 -
Handling outliers in non-blind image deconvolution论文阅读
通过。原创 2025-06-27 06:45:04 · 1142 阅读 · 0 评论 -
Fast Image Deconvolution using Hyper-Laplacian Priors论文阅读
分裂策略:将非凸问题分解为凸(FFT求解)+非凸(像素级求解)子问题w子问题加速LUT实现O1O(1)O1复杂度单像素求解解析解实现α1223α1/22/3的精确高效计算参数调度β\betaβ指数增长平衡收敛速度与精度工程优化:预计算分母项、持久化LUT存储减少重复计算。原创 2025-06-25 21:39:45 · 872 阅读 · 0 评论 -
Motion Aware Event Representation-Driven Image Deblurring论文阅读
偏差累积事件表示(Deviation Accumulation, DA):重新定义事件数据预处理,增强运动模式感知。循环运动提取模块(Recurrent Motion Extraction, RME):多尺度运动特征提取机制。特征对齐与融合模块(Feature Alignment and Fusion, FAF):解决事件与图像模态不一致性问题。组件传统方法缺陷本文创新点性能提升DA忽略事件顺序和绝对光强累积偏差保留历史事件影响PSNR↑0.26dB(表2)RME单尺度运动建模不足。原创 2025-06-25 21:06:54 · 838 阅读 · 0 评论 -
Gyro-based Neural Single Image Deblurring论文阅读
提出一种结合陀螺仪(gyro)传感器的单图像去模糊方法。核心目标是利用陀螺仪数据提供的相机运动信息,缓解传统去模糊方法的。(b) 陀螺数据(红)与模糊轨迹不匹配;:直接使用噪声陀螺数据训练易导致网络忽略陀螺输入(表2-b)。可变(与曝光时间成正比),通过三次样条插值降采样至。:校正陀螺数据中的全局误差(噪声、旋转中心偏移)。:利用精炼陀螺特征去除空间变异模糊(含动态物体)。性价比最优(PSNR饱和,内存翻倍)。为卷积权重,GAP为全局平均池化。,提升模糊图像的恢复质量。),确保时间中心对称。原创 2025-06-24 21:30:28 · 1075 阅读 · 0 评论 -
Revisiting Image Deblurring with an Efficient ConvNet论文阅读
论文旨在解决高分辨率图像去模糊任务中 Transformer 架构计算成本过高的问题,同时克服传统 CNN 感受野有限的缺陷。核心目标是设计一种轻量化的纯卷积网络(CNN),在保持高效性的同时实现与 Transformer 相当的性能。图 2:LaKDNet 架构论文提出 LaKD(Large Kernel Depth-wise)模块,核心创新在于:整体结构为 4 层编码器-解码器(U-Net 架构),每层含 N 个 LaKD 模块(图 2):关键公式(对应论文公式 1-3):特征混合递归计算:zk+1原创 2025-06-24 21:16:19 · 1041 阅读 · 0 评论 -
A Three-Dimensional Forward-Looking Imaging Algorithm Based on 2D Iterative Adaptive Approach论文阅读
1.1 核心问题论文旨在解决机载平面阵列雷达在三维前视成像中方位-俯仰分辨率不足的问题。传统方法(如2D-FFT)受限于天线物理孔径和傅里叶变换的旁瓣效应,导致相邻目标在方位和俯仰方向难以分辨。本文提出一种基于二维迭代自适应方法(2D Iterative Adaptive Approach, 2D-IAA)的算法,通过单快照超分辨估计提升分辨率。1.2 产业意义提出 基于2D-IAA的三维前视成像算法,核心流程分为三阶段:误差函数(式(9)):E=(y−Aσ)HW(y−Aσ)E = (y - A\sig原创 2025-04-19 01:15:00 · 668 阅读 · 0 评论 -
A Bayesian Angular Superresolution Method With Lognormal Constraint for Sea-Surface Target论文阅读
精准建模:瑞利似然匹配海杂波 + 对数正态先验匹配目标统计特性;高效求解:通过贝叶斯MAP推导闭式迭代更新公式(20);性能优势:在提升分辨率(可达1°内目标分离)的同时,保持低SCR下的鲁棒性(对比实验SCR=10dB时GSMAP出现虚警而RLGMAP稳定)。此方法为实波束雷达对海成像提供了统计特性驱动的超分辨新范式。原创 2025-06-18 14:46:53 · 448 阅读 · 0 评论 -
Self-Supervised Blind Motion Deblurring with Deep Expectation Maximization论文阅读
方法,用于去除静态场景图像中由相机抖动引起的。本文结果(最右列)纹理更清晰,伪影更少。论文旨在开发一种无需数据集的。原创 2025-06-23 00:30:00 · 1145 阅读 · 0 评论 -
Efficient Frequency Domain-based Transformers for High-Quality Image Deblurring论文阅读
深层特征更清晰,适合FSAS优化。——空间域的卷积等价于频域的逐元素乘积(Element-wise Product)。( c) DFFN模块。的计算迁移至频域,显著降低计算复杂度并增强特征判别力。本文方法(红点)在PSNR、FLOPs、参数量上均优于SOTA。传统Transformer的空间域自注意力计算需生成查询矩阵。,提出一种基于频域的高效方法,以提升去模糊的精度与效率。PSNR增益,证明其频段选择机制的有效性。矩阵乘法计算注意力图,其空间复杂度为。实际测试中(表4),FSAS在分辨率。原创 2025-06-23 00:15:00 · 1243 阅读 · 0 评论 -
Self-Supervised Non-Uniform Kernel Estimation With Flow-Based Motion Prior论文阅读
(Non-uniform Blur Kernel)的估计问题。传统方法假设模糊核是空间不变的(Uniform),但实际场景中模糊核因相机抖动或物体运动而呈现空间变化(Spatially Varying)。(Multi-scale Kernel Attention Module, KAM),提升模糊核估计的准确性和鲁棒性。(Normalizing Flows)建模模糊核的潜在空间表示,结合。非均匀模糊具有空间变化特性,需动态融合图像特征与局部核信息。:流先验与不确定性学习的消融实验(重模糊PSNR)原创 2025-06-22 00:15:00 · 1694 阅读 · 0 评论 -
Intriguing Findings of Frequency Selection for Image Deblurring论文阅读
PSNR提升至33.85 dB(GoPro数据集),优于SOTA模型(如NAFNet的33.69 dB),且计算成本仅小幅增加。:仅增加 0.06M 参数(表4),FLOPs 增幅可控(图1 PSNR-FLOPs 帕累托前沿最优)。通过简单操作(FFT→ReLU→iFFT),无需复杂估计即可提取模糊模式,为多域融合模型设计提供新范式。处理后,输出显式反映模糊结构(如线性运动方向)。的结构信息(见图3示例)。原创 2025-06-22 00:15:00 · 591 阅读 · 0 评论 -
Learning to Predict Decomposed Dynamic Filters for Single Image Motion Deblurring论文阅读
公式表达式作用(2)XijFMXijδ′;ΘDDF∣MXijδ′DDF 算子定义(4)DijBijAijDijBijAij权重低秩分解(6)(7)GuvjeΔmuvjζτ∑meΔmuvmζτGuvj∑meΔmuvmζτ。原创 2025-06-21 00:30:00 · 1054 阅读 · 0 评论 -
Real-World Deep Local Motion Deblurring论文阅读
局部模糊形成模型BxyISP∫T1T2ftxydtBxyISP∫T1T2ftxydt光度对齐PB′xyβ⋅PBxyβPRS‾PRB‾PGS‾PGB‾PBS‾PBB‾PB′xyβ⋅PBxyβPRBPRSPGBPGSPBBPBS。原创 2025-06-21 00:15:00 · 1016 阅读 · 2 评论 -
Event-Based Fusion for Motion Deblurring with Cross-modal Attention论文阅读
SCERisgni−N∑jm≤tj≤Mpjδxjyj(公式8)\text{SCER}_i = \operatorname{sgn}(i-N) \sum_{j: m \leq t_j \leq M} p_j \delta_{x_j y_j} \quad \text{(公式8)}SCERisgni−Njm≤tj≤M∑pjδxjyj公式8)物理意义iNi < NiN。原创 2025-06-17 08:51:23 · 394 阅读 · 0 评论 -
Learning Degradation Representations for Image Deblurring论文阅读
现有方法依赖固定卷积核或忽略显式退化建模,导致在真实场景(如动态模糊、非均匀模糊)中性能受限。(Degradation Representations)自适应处理空间变化的模糊模式。“重模糊任务监督退化表示学习,去模糊任务优化表示的可迁移性”退化表示通过SAM模块(公式9)调制多尺度跨层特征。(Image Deblurring)任务中。“迫使网络关注残留模糊区域”图2:MSDI-Net架构。共享表示但独立权重。原创 2025-06-20 00:30:00 · 1528 阅读 · 0 评论 -
Animation from Blur: Multi-modal Blur Decomposition with Motion Guidance论文阅读
公式数学表达作用出处(1)Ib1T∫0TItdtIbT1∫0TItdt模糊成像模型Sec.3(5)ItuvIt1FtuvItuvIt1Ftuv))帧间光流约束Sec.3(8)L2∣I−I∣22L2∣I−I∣22序列重建损失Sec.3.2(9)Lguidanceλ1LGANλ2LVAEλ3LKLLguidanceλ。原创 2025-06-20 00:15:00 · 679 阅读 · 0 评论 -
Improving Image Restoration by Revisiting Global Information Aggregation论文阅读
论文首次指出图像恢复任务中存在的训练-测试不一致性(Train-Test Inconsistency)训练阶段:模型在小块(如256×256)上学习全局操作(如全局平均池化),统计特征仅覆盖局部区域(图1a)。训练-测试不一致性示意图(论文图1)(a) 训练时全局操作仅覆盖小块;(b) TLC在测试时强制局部聚合。测试阶段:模型处理全分辨率图像(如720×1280),全局操作被迫计算全域统计特征,导致特征分布偏移(图3a左)。分布偏移修正(论文图3a)原创 2025-06-19 00:30:00 · 805 阅读 · 0 评论 -
D2HNet: Joint Denoising and Deblurring with Hierarchical Network for Robust Night Image Re论文阅读
图3:DeblurNet(左)与EnhanceNet(右)结构。,通过融合长曝光(低噪声、高模糊)和短曝光(低模糊、高噪声)图像,解决夜景拍摄中同时存在的。图4:数据增强流程(含Varmap与CutNoise)“DeblurNet运行在训练和测试相同的固定分辨率下,确保像素偏移和模糊尺度可比”:D2HNet在暗区去噪(如黑色背景)和边缘保留(如文字)显著优于竞品。:将“固定分辨率处理域差异”思路迁移至其他跨域任务(如低光增强、去雨)。图5:方差图阈值设定(5%分位数对应高模糊区域)原创 2025-06-19 00:15:00 · 1820 阅读 · 0 评论 -
Simple Baselines for Image Restoration论文阅读
研究目标:论文旨在解决当前图像复原领域(如去噪、去模糊)中模型系统复杂度(System Complexity)过高的问题。现有SOTA方法虽性能优异,但引入了复杂的模块设计(如多阶段结构、多头注意力),导致模型难以分析、部署和优化。作者提出一个简单高效的基线模型,并通过简化发现非线性激活函数(如ReLU、GELU)并非必要,最终提出非线性激活自由网络(NAFNet)。实际意义:论文将系统复杂度拆解为块间复杂度(Inter-block Complexity) 和块内复杂度(Intra-block Compl原创 2025-06-18 00:30:00 · 930 阅读 · 0 评论 -
Stripformer: Strip Transformer for Fast Image Deblurring论文阅读
论文旨在解决动态场景中因物体移动或相机抖动导致的**非均匀模糊(non-uniform blur)**问题。此类模糊具有方向性、区域性和多尺度特性(如短程与长程模糊),传统方法难以高效建模。Stripformer的目标是设计一种轻量化的Transformer架构,在低计算开销下实现高性能去模糊。(Strip Attention)建模模糊的方向性与多尺度特性。:同等参数量下PSNR提升0.42,FLOPs降至1/4,且无需额外数据预训练。,捕捉短程模糊方向性(图1a)。,捕捉长程模糊幅度(图1b)。原创 2025-06-18 00:15:00 · 981 阅读 · 0 评论 -
Deep Generalized Unfolding Networks for Image Restoration论文阅读
的问题,提出一种兼具模型驱动可解释性与数据驱动自适应性的框架。原创 2025-06-17 00:30:00 · 1184 阅读 · 0 评论 -
All-in-One Image Restoration for Unknown Corruption论文阅读
论文旨在解决图像恢复领域的一个核心挑战:如何设计一个统一的模型(All-in-One)来处理多种未知退化类型和退化程度。传统方法需针对特定退化(如噪声、雨雾)设计专用模型,但真实场景中退化类型和程度常未知且动态变化(如自动驾驶中连续遭遇雨雾)。AirNet的目标是:AirNet由两个核心模块组成:学习退化表征 zzz,使其满足:正负样本构造(论文3.2节):对比损失函数(公式3):Lcl=−logexp(q⋅k+/τ)∑i=0Kexp(q⋅ki−/τ)\mathcal{L}_{cl} = -\lo原创 2025-06-17 00:15:00 · 1022 阅读 · 0 评论 -
Uformer: A General U-Shaped Transformer for Image Restoration论文阅读
公式表达式作用(1)ℓI′I∣I′−I∣2ϵ2ℓI′I∣I′−I∣2ϵ2Charbonnier损失函数(2)LeWin块计算流程(4)AttentionQKVSoftMaxQKTdkBVAttentionQKVSoftMaxdkQKTBV带相对位置编码的窗口注意力。原创 2025-06-16 00:30:00 · 948 阅读 · 1 评论 -
MAXIM: Multi-Axis MLP for Image Processing论文阅读
特性传统TransformerMAXIM复杂度OH2W2CO(H^2W^2C)OH2W2COHWCO(HWC)OHWC输入分辨率支持固定尺寸分块任意尺寸(全卷积)全局感受野依赖预训练原生支持边界伪影严重(分块处理)无参数量(GoPro任务)计算效率:在256×256256×256输入下,MAXIM-3S仅需339.2 GFLOPs(表7C)性能增益:MAB贡献最大提升(+1.04 dB PSNR),CGB进一步优化细节(表7B)原创 2025-06-16 00:15:00 · 2420 阅读 · 0 评论 -
Restormer: Efficient Transformer for High-Resolution Image Restoration
设计一种高效Transformer架构,在保持全局建模能力的同时,实现对高分辨率图像(如4K)的高效处理。核心模块:(a) MDTA(跨通道注意力),(b) GDFN(门控特征变换)。:仅用GoPro训练,在HIDE上泛化性能优于MPRNet(0.26 dB↑),FLOPs降低81%。:平均PSNR提升1.05 dB,Rain100L数据集提升2.06 dB(当前最优)。:首个在真实噪声数据集(SIDD/DND)上突破40 dB PSNR的模型。,无法处理高分辨率图像(如4K)。原创 2025-06-15 00:30:00 · 986 阅读 · 0 评论 -
Non-uniform Blur Kernel Estimation via Adaptive Basis Decomposition论文阅读
公式描述编号ki∑bkbmibki∑bkbmib基分解模型Eq.2viR⟨u∑bkbmib⟩1γviR(⟨u∑bkbmib⟩1/γ含饱和的退化模型Eq.3Rvivi−1alog1eavi−1Rvivi−a1log1eavi−1饱和算子平滑近似Eq.4Lreblur∑wivi。原创 2025-06-15 00:15:00 · 703 阅读 · 0 评论 -
SDWNet: A Straight Dilated Network with Wavelet Transformation for image Deblurring论文阅读
因为模糊过程(如运动模糊)丢失了高频细节信息,导致单张模糊图像可能对应多个清晰图像的解。(Image Deblurring)问题,即从模糊图像中恢复出清晰的图像。(相邻卷积核感受野不连续导致的棋盘格伪影)。时PSNR/SSIM最优(图7)。图4:小波重建模块(WRM)流程。图3:膨胀卷积模块结构。原创 2025-06-14 00:30:00 · 741 阅读 · 0 评论 -
Rethinking Coarse-to-Fine Approach in Single Image Deblurring论文阅读
轻量化设计MISE通过共享编码器减少参数量(6.8M vs DeepDeblur 11.7M)。MOSD实现并行输出,避免串行计算(0.008s vs MT-RNN 0.07s)。动态特征融合AFF打破传统尺度隔离,提升高频细节恢复能力(图5文字区域更清晰)。频域监督创新MSFR损失直接优化频率差异,解决模糊导致的频谱失真问题。局限与思考FAM模块引入额外计算(虽未显著增加延迟,但在移动端需量化验证)。多尺度监督可能加剧训练难度(需平衡各尺度损失权重)。原创 2025-06-14 00:15:00 · 1878 阅读 · 0 评论