海量数据处理——位图法bitmap

一、定义

       位图法就是bitmap的缩写。所谓bitmap,就是用每一位来存放某种状态,适用于大规模数据,但数据状态又不是很多的情况。通常是用来判断某个数据存不存在的。在STL中有一个bitset容器,其实就是位图法,引用bitset介绍:
A bitset is a special container class that is designed to store bits (elements with only two possible values: 0 or 1,true or false, ...).The class is very similar to a regular array, but optimizing for space allocation: each element occupies only one bit (which is eight times less than the smallest elemental type in C++: char).Each element (each bit) can be accessed individually: for example, for a given bitset named mybitset, the expression mybitset[3] accesses its fourth bit, just like a regular array accesses its elements.

二、数据结构

unsigned int bit[N];
在这个数组里面,可以存储 N * sizeof(int) * 8个数据,但是最大的数只能是N * sizeof(int)  * 8 - 1。假如,我们要存储的数据范围为0-15,则我们只需要使得N=1,这样就可以把数据存进去。如下图:

数据为【5,1,7,15,0,4,6,10】,则存入这个结构中的情况为

三、相关操作

1,写入数据

定义一个数组: unsigned char bit[8 * 1024];这样做,能存 8K*8=64K 个 unsigned short 数据。bit 存放的字节位置和位位置(字节 0~8191 ,位 0~7 )

比如写 1234 ,字节序: 1234/8 = 154; 位序: 1234 &0b111 = 2 ,那么 1234 放在 bit 的下标 154 字节处,把该字节的 2 号位( 0~7)置为 1

字节位置: int nBytePos =1234/8 = 154;

位位置:   int nBitPos = 1234 & 7 = 2;

<span style="color:#330033;">// 把数组的 154 字节的 2 位置为 1  
unsigned short val = 1<<nBitPos;  

bit[nBytePos] = bit[nBytePos] |val;  // 写入 1234 得到arrBit[154]=0b00000100  </span>

再比如写入 1236 ,

字节位置: int nBytePos =1236/8 = 154;

位位置:   int nBitPos = 1236 & 7 = 4

<span style="color:#330033;">// / 把数组的 154 字节的 4 位置为 1  
val = 1<<nBitPos; 
 
arrBit[nBytePos] = arrBit[nBytePos] |val;  // 再写入 1236 得到arrBit[154]=0b00010100  </span>

函数实现:

<span style="color:#330033;">#define SHIFT 5    
#define MAXLINE 32    
#define MASK 0x1F    
void setbit(int *bitmap, int i){    
    bitmap[i >> SHIFT] |= (1 << (i & MASK));    
}  </span>

2,读指定位

<span style="color:#330033;">bool getbit(int *bitmap1, int i){    
    return bitmap1[i >> SHIFT] & (1 << (i & MASK));    
}   </span>

四、位图法的缺点

  1. 可读性差
  2. 位图存储的元素个数虽然比一般做法多,但是存储的元素大小受限于存储空间的大小。位图存储性质:存储的元素个数等于元素的最大值。比如, 1K 字节内存,能存储 8K 个值大小上限为 8K 的元素。(元素值上限为 8K ,这个局限性很大!)比如,要存储值为 65535 的数,就必须要 65535/8=8K 字节的内存。要就导致了位图法根本不适合存 unsigned int 类型的数(大约需要 2^32/8=5 亿字节的内存)。
  3. 位图对有符号类型数据的存储,需要 2 位来表示一个有符号元素。这会让位图能存储的元素个数,元素值大小上限减半。 比如 8K 字节内存空间存储 short 类型数据只能存 8K*4=32K 个,元素值大小范围为 -32K~32K 。

五、位图法的应用

  1、给40亿个不重复的unsigned int的整数,没排过序的,然后再给一个数,如何快速判断这个数是否在那40亿个数当中
  首先,将这40亿个数字存储到bitmap中,然后对于给出的数,判断是否在bitmap中即可。
2、使用位图法判断整形数组是否存在重复
      遍历数组,一个一个放入bitmap,并且检查其是否在bitmap中出现过,如果没出现放入,否则即为重复的元素。
       3、使用位图法进行整形数组排序
      首先遍历数组,得到数组的最大最小值,然后根据这个最大最小值来缩小bitmap的范围。这里需要注意对于int的负数,都要转化为unsigned int来处理,而且取位的时候,数字要减去最小值。
       4、在2.5亿个整数中找出不重复的整数,注,内存不足以容纳这2.5亿个整数
      参 考的一个方法是:采用2-Bitmap(每个数分配2bit,00表示不存在,01表示出现一次,10表示多次,11无意义)。其实,这里可以使用两个普 通的Bitmap,即第一个Bitmap存储的是整数是否出现,如果再次出现,则在第二个Bitmap中设置即可。这样的话,就可以使用简单的1- Bitmap了。

求解问题如下:

在本地磁盘里面有file1和file2两个文件,每一个文件包含500万条随机整数(可以重复),最大不超过2147483648也就是一个int表示范围。要求写程序将两个文件中都含有的整数输出到一个新文件中。

要求:
1.程序的运行时间不超过5秒钟。
2.没有内存泄漏。
3.代码规范,能要考虑到出错情况。

4.代码具有高度可重用性及可扩展性,以后将要在该作业基础上更改需求。

初一看,觉得很简单,不就是求两个文件的并集嘛,于是很快写出了下面的代码。

<span style="color:#330033;">#include<iostream>  
#include<vector>  
#include<cstdlib>  
#include<algorithm>  
#include<fstream>  
  
using namespace std;  
  
void merge(const vector<int> &, const vector<int>&, vector<int> &);  
  
int main(){  
    vector<int> v1, v2;  
    vector<int> result;  
    char buf[512];  
    FILE *fp;  
    fp = fopen("file1", "r");  
      
    if(fp < 0){  
        cout<<"Open file failed!\n";  
        exit(1);  
    }  
  
    while(fgets(buf, 512, fp) != NULL){  
        v1.push_back(atoi(buf));  
    }  
    sort(v1.begin(), v1.end());  
    fclose(fp);  
  
  
    fp = fopen("file2", "r");  
    if(fp < 0){  
        cout<<"Open file2 failed!\n";  
        exit(1);  
    }  
  
    while(fgets(buf, 512, fp) != NULL){  
        v2.push_back(atoi(buf));  
    }  
    sort(v2.begin(), v2.end());  
    cout<<v1[v1.size() - 1]<<endl;  
    cout<<v2[v2.size() - 1]<<endl;  
    fclose(fp);  
    merge(v1, v2, result);  
    cout<<result.size();  
      
    ofstream output;  
    output.open("result");  
    if(output.fail()){  
        cerr<<"crete file failed!\n";  
        exit(1);  
    }  
      
    vector<int>::const_iterator p = result.begin();  
    for(; p != result.end(); p++){  
        output<<*p<<endl;  
    }  
    output.close();  
    return 0;  
}  
  
void merge(const vector<int>& v1, const vector<int>& v2, vector<int> &result){  
    vector<int>::const_iterator p1, p2;  
    p1 = v1.begin();  
    p2 = v2.begin();  
      
    while((p1 != v1.end()) && p2 != v2.end()){  
        if(*p1 < *p2){  
            p1++;  
        }else if(*p1 > *p2){  
            p2++;  
        }else{  
            result.push_back(*p1);  
            p1++;  
            p2++;  
        }  
    }  
  
}  </span>

编译运行。

一看,不行,不满足上面的5秒之内,于是又想了很久,上面不是显示sys调用花了很长时间嘛,于是有写了一个程序,用快速排序+二分查找法实现,代码如下:

<span style="color:#330033;">#include <iostream>  
#include <fstream>  
#include <vector>  
#include <cstdlib>  
#include <cstdio>  
  
#define MAXLINE 32  
  
using namespace std;  
  
void qsort(vector<int>&, int, int);  
int partition(vector<int>&, int, int);  
bool binarySearch(const vector<int>&, int);  
  
int main(){  
    vector<int> v1, result;  
    int temp;  
    char buf[MAXLINE];  
    FILE *fd;  
  
    fd = fopen("file1", "r");  
    if(fd == NULL){  
        cerr<<"Open file1 failed!\n";  
        exit(1);  
    }  
    while(fgets(buf, MAXLINE, fd) != NULL){  
        v1.push_back(atoi(buf));  
    }  
      
    fclose(fd);  
    //cout<<v1.size()<<endl;  
    qsort(v1, 0, v1.size() - 1);  
      
    /*vector<int>::const_iterator p = v1.begin(); 
    for(; p != v1.end(); p++){ 
        cout<<*p<<endl; 
        sleep(1); 
    }*/  
  
    fd = fopen("file2", "r");  
    if(fd == NULL){  
        cerr<<"open file2 failed!\n";  
        exit(1);  
    }  
  
    while(fgets(buf, MAXLINE, fd) != NULL){  
        temp = atoi(buf);  
        if(binarySearch(v1, temp)){  
            result.push_back(temp);  
        }  
    }  
    cout<<result.size();  
  
    return 0;  
}  
  
void qsort(vector<int> &v, int low, int hight){  
    if(low < hight){  
        int mid = partition(v, low, hight);  
        qsort(v, low, mid - 1);  
        qsort(v, mid + 1, hight);  
    }  
}  
  
int  partition(vector<int> &v, int min, int max){  
    int temp = v[min];  
    while(min < max){  
        while(min < max && v[max] >= temp)  
            max--;  
        v[min] = v[max];  
        while(min < max && v[min] <= temp)  
            min++;  
        v[max] = v[min];  
    }  
  
    v[min] = temp;  
    return min;  
}  
  
bool binarySearch(const vector<int> &v, int key){  
    int low, hight, mid;  
    low = 0;   
    hight = v.size() - 1;  
      
    while(low <= hight){  
        mid = (low + hight) /2;  
        if(v[mid] == key){  
            return true;  
        }else if(v[mid] < key){  
            low = mid + 1;  
        }else{  
            hight = mid - 1;  
        }  
    }  
  
    return false;  
}  </span>

正乐着呢,编译运行:


结果发现,user时间是2.194秒,整个时间还要比以前长,显然这种方法还是不行,原因就是两个文件太大了,500万条,不是一般小,且上面花的时间主要用在排序上面去了,于是就想,能不能不用排序完成?这时有个朋友和我说了一下位图法,灵感一来,自己又去改写了代码:

<span style="color:#330033;">#include <iostream>  
#include <cstdlib>  
#include <cstdio>  
#include <cstring>  
#include <fstream>  
#include <string>  
#include <vector>  
#include <algorithm>  
#include <iterator>  
  
#define SHIFT 5  
#define MAXLINE 32  
#define MASK 0x1F  
  
using namespace std;  
  
void setbit(int *bitmap, int i){  
    bitmap[i >> SHIFT] |= (1 << (i & MASK));  
}  
  
bool getbit(int *bitmap1, int i){  
    return bitmap1[i >> SHIFT] & (1 << (i & MASK));  
}  
  
size_t getFileSize(ifstream &in, size_t &size){  
    in.seekg(0, ios::end);  
    size = in.tellg();  
    in.seekg(0, ios::beg);  
    return size;  
}  
  
char * fillBuf(const char *filename){  
    size_t size = 0;  
    ifstream in(filename);  
    if(in.fail()){  
        cerr<< "open " << filename << " failed!" << endl;  
        exit(1);  
    }  
    getFileSize(in, size);    
      
    char *buf = (char *)malloc(sizeof(char) * size + 1);  
    if(buf == NULL){  
        cerr << "malloc buf error!" << endl;  
        exit(1);  
    }  
      
    in.read(buf, size);  
    in.close();  
    buf[size] = '\0';  
    return buf;  
}  
void setBitMask(const char *filename, int *bit){  
    char *buf, *temp;  
    temp = buf = fillBuf(filename);  
    char *p = new char[11];  
    int len = 0;  
    while(*temp){  
        if(*temp == '\n'){  
            p[len] = '\0';  
            len = 0;  
            //cout<<p<<endl;  
            setbit(bit, atoi(p));  
        }else{  
            p[len++] = *temp;  
        }  
        temp++;  
    }  
    delete buf;  
}  
  
void compareBit(const char *filename, int *bit, vector<int> &result){  
    char *buf, *temp;  
    temp = buf = fillBuf(filename);  
    char *p = new char[11];  
    int len = 0;  
    while(*temp){  
        if(*temp == '\n'){  
            p[len] = '\0';  
            len = 0;  
            if(getbit(bit, atoi(p))){  
                result.push_back(atoi(p));  
            }  
        }else{  
            p[len++] = *temp;  
        }  
        temp++;  
    }  
    delete buf;  
}  
  
int main(){  
    vector<int> result;  
    unsigned int MAX = (unsigned int)(1 << 31);  
    unsigned int size = MAX >> 5;  
    int *bit1;  
  
    bit1 = (int *)malloc(sizeof(int) * (size + 1));  
    if(bit1 == NULL){  
        cerr<<"Malloc bit1 error!"<<endl;  
        exit(1);  
    }  
  
    memset(bit1, 0, size + 1);  
    setBitMask("file1", bit1);  
    compareBit("file2", bit1, result);  
    delete bit1;  
      
    cout<<result.size();  
    sort(result.begin(), result.end());  
    vector< int >::iterator   it = unique(result.begin(), result.end());  
  
    ofstream    of("result");  
    ostream_iterator<int> output(of, "\n");  
    copy(result.begin(), it, output);  
      
    return 0;  
}  </span>

这是利用位图法实现的程序,编译运行


运行时间明显比前两个少,但是这个程序是以空间换取时间,程序运行的时候分配了几百兆的空间。可见在程序设计中,方法很重要。什么情况选用什么方法。但是还是觉得前面两个方法还行,因为需要的空间比较少。




  • 6
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
众所周知,人工智能是当前最热门的话题之一, 计算机技术与互联网技术的快速发展更是将对人工智能的研究推向一个新的高潮。 人工智能是研究模拟和扩展人类智能的理论与方及其应用的一门新兴技术科学。 作为人工智能核心研究领域之一的机器学习, 其研究动机是为了使计算机系统具有人的学习能力以实现人工智能。 那么, 什么是机器学习呢? 机器学习 (Machine Learning) 是对研究问题进行模型假设,利用计算机从训练数据中学习得到模型参数,并最终对数据进行预测和分析的一门学科。 机器学习的用途 机器学习是一种通用的数据处理技术,其包含了大量的学习算。不同的学习算在不同的行业及应用中能够表现出不同的性能和优势。目前,机器学习已成功地应用于下列领域: 互联网领域----语音识别、搜索引擎、语言翻译、垃圾邮件过滤、自然语言处理等 生物领域----基因序列分析、DNA 序列预测、蛋白质结构预测等 自动化领域----人脸识别、无人驾驶技术、图像处理、信号处理等 金融领域----证券市场分析、信用卡欺诈检测等 医学领域----疾病鉴别/诊断、流行病爆发预测等 刑侦领域----潜在犯罪识别与预测、模拟人工智能侦探等 新闻领域----新闻推荐系统等 游戏领域----游戏战略规划等 从上述所列举的应用可知,机器学习正在成为各行各业都会经常使用到的分析工具,尤其是在各领域数据量爆炸的今天,各行业都希望通过数据处理与分析手段,得到数据中有价值的信息,以便明确客户的需求和指引企业的发展。
众所周知,人工智能是当前最热门的话题之一, 计算机技术与互联网技术的快速发展更是将对人工智能的研究推向一个新的高潮。 人工智能是研究模拟和扩展人类智能的理论与方及其应用的一门新兴技术科学。 作为人工智能核心研究领域之一的机器学习, 其研究动机是为了使计算机系统具有人的学习能力以实现人工智能。 那么, 什么是机器学习呢? 机器学习 (Machine Learning) 是对研究问题进行模型假设,利用计算机从训练数据中学习得到模型参数,并最终对数据进行预测和分析的一门学科。 机器学习的用途 机器学习是一种通用的数据处理技术,其包含了大量的学习算。不同的学习算在不同的行业及应用中能够表现出不同的性能和优势。目前,机器学习已成功地应用于下列领域: 互联网领域----语音识别、搜索引擎、语言翻译、垃圾邮件过滤、自然语言处理等 生物领域----基因序列分析、DNA 序列预测、蛋白质结构预测等 自动化领域----人脸识别、无人驾驶技术、图像处理、信号处理等 金融领域----证券市场分析、信用卡欺诈检测等 医学领域----疾病鉴别/诊断、流行病爆发预测等 刑侦领域----潜在犯罪识别与预测、模拟人工智能侦探等 新闻领域----新闻推荐系统等 游戏领域----游戏战略规划等 从上述所列举的应用可知,机器学习正在成为各行各业都会经常使用到的分析工具,尤其是在各领域数据量爆炸的今天,各行业都希望通过数据处理与分析手段,得到数据中有价值的信息,以便明确客户的需求和指引企业的发展。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值