sklearn朴素贝叶斯类库(naive_bayes)使用小结

转载自:https://www.cnblogs.com/pinard/p/6074222.html
感谢原作者:刘建平Pinard

scikit-learn 朴素贝叶斯类库使用小结

  
  之前在朴素贝叶斯算法原理小结这篇文章中,对朴素贝叶斯分类算法的原理做了一个总结。这里我们就从实战的角度来看朴素贝叶斯类库。重点讲述scikit-learn朴素贝叶斯类库的使用要点和参数选择。

1. scikit-learn 朴素贝叶斯类库概述

  朴素贝叶斯是一类比较简单的算法,scikit-learn中朴素贝叶斯类库的使用也比较简单。相对于决策树,KNN之类的算法,朴素贝叶斯需要关注的参数是比较少的,这样也比较容易掌握。在scikit-learn中,一共有3个朴素贝叶斯的分类算法类。分别是GaussianNB,MultinomialNB和BernoulliNB。其中GaussianNB就是先验为高斯分布的朴素贝叶斯,MultinomialNB就是先验为多项式分布的朴素贝叶斯,而BernoulliNB就是先验为伯努利分布的朴素贝叶斯。

    这三个类适用的分类场景各不相同,一般来说,如果样本特征的分布大部分是连续值,使用GaussianNB会比较好。如果样本特征的分布大部分是多元离散值,使用MultinomialNB比较合适。而如果样本特征是二元离散值或者很稀疏的多元离散值,应该使用BernoulliNB。

2. GaussianNB类使用总结

    GaussianNB假设特征的先验概率为正态分布,即如下式:
    

P(Xj|Y=Ck)=12πσ2kexp((xjμk)22σ2k) P ( X j | Y = C k ) = 1 2 π σ k 2 e x p ( − ( x j − μ k ) 2 2 σ k 2 )

    其中 Ck C k 为Y的第k类类别。 μk μ k σ2k σ k 2 为需要从训练集估计的值。

    GaussianNB会根据训练集求出 μk μ k σ2k σ k 2 μk μ k 为在样本类别 Ck C k 中,所有 Xj X j ( j=1,2,3... j = 1 , 2 , 3... )的平均值。 σ2k σ k 2 为在样本类别 Ck C k 中,所有 Xj X j ( j=1,2,3... j = 1 , 2 , 3... )的方差。

class sklearn.naive_bayes.GaussianNB(priors=None)

    GaussianNB类的主要参数仅有一个,即先验概率priors ,对应Y的各个类别的先验概率 P(Y=Ck) P ( Y = C k ) 。这个值默认不给出,如果不给出此时 P(Y=Ck)=mkm P ( Y = C k ) = m k m 。其中m为训练集样本总数量, mk m k 为输出为第k类别的训练集样本数。如果给出的话就以priors 为准。

    在使用GaussianNB的fit方法拟合数据后,我们可以进行预测。此时预测有三种方法,包括predict,predict_log_proba和predict_proba

    predict方法就是我们最常用的预测方法,直接给出测试集的预测类别输出

    predict_proba则不同,它会给出测试集样本在各个类别上预测的概率。容易理解,predict_proba预测出的各个类别概率里的最大值对应的类别,也就是predict方法得到类别。

    predict_log_proba和predict_proba类似,它会给出测试集样本在各个类别上预测的概率的一个对数转化。转化后predict_log_proba预测出的各个类别对数概率里的最大值对应的类别,也就是predict方法得到类别。

下面给一个具体的例子,代码如下:

import numpy as np
X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])#训练集
Y = np.array([1, 1, 1, 2, 2, 2])#每个点的类标签
from sklearn.naive_bayes import GaussianNB
clf = GaussianNB()

拟合数据

clf.fit(X, Y)#要先训练(调用fit方法)才能预测(调用predict方法)
print "==Predict result by predict=="
print(clf.predict([[-0.8, -1]]))#预测该点类别
print "==Predict result by predict_proba=="
print(clf.predict_proba([[-0.8, -1]]))
print "==Predict result by predict_log_proba=="
print(clf.predict_log_proba([[-0.8, -1]]))

结果如下:

==Predict result by predict==
[1]
==Predict result by predict_proba==
[[  9.99999949e-01   5.05653254e-08]]
==Predict result by predict_log_proba==
[[ -5.05653266e-08  -1.67999998e+01]]

    从上面的结果可以看出,测试样本[-0.8,-1]的类别预测为类别1。具体的测试样本[-0.8,-1]被预测为1的概率为9.99999949e-01 ,远远大于预测为2的概率5.05653254e-08。这也是为什么最终的预测结果为1的原因了。

    此外,GaussianNB一个重要的功能是有 partial_fit方法,这个方法的一般用在如果训练集数据量非常大,一次不能全部载入内存的时候。这时我们可以把训练集分成若干等分,重复调用partial_fit来一步步的学习训练集,非常方便。后面讲到的MultinomialNB和BernoulliNB也有类似的功能。

3. MultinomialNB类使用总结

    MultinomialNB假设特征的先验概率为多项式分布,即如下式:

P(Xj=xjl|Y=Ck)=xjl+λmk+nλ P ( X j = x j l | Y = C k ) = x j l + λ m k + n λ

    其中, P(Xj=xjl|Y=Ck) P ( X j = x j l | Y = C k ) 是第 k k 个类别的第j维特征的第 l l 个个取值条件概率。mk是训练集中输出为第 k k 类的样本个数。λ 为一个大于 0 0 的常数,常常取为1,即拉普拉斯平滑。也可以取其他值。

class sklearn.naive_bayes.MultinomialNB(alpha=1.0, fit_prior=True,
class_prior=None)

    MultinomialNB参数比GaussianNB多,但是一共也只有仅仅3个。其中,参数alpha即为上面的常数λ,如果你没有特别的需要,用默认的1即可。如果发现拟合的不好,需要调优时,可以选择稍大于1或者稍小于1的数。布尔参数fit_prior表示是否要考虑先验概率,如果是false,则所有的样本类别输出都有相同的类别先验概率。否则可以自己用第三个参数class_prior输入先验概率,或者不输入第三个参数class_prior让MultinomialNB自己从训练集样本来计算先验概率,此时的先验概率为 P(Y=Ck)=mk/m P ( Y = C k ) = m k / m 。其中m为训练集样本总数量, mk m k 为输出为第 k k 类别的训练集样本数。总结如下:

这里写图片描述

    在使用MultinomialNB的fit方法或者partial_fit方法拟合数据后,我们可以进行预测。此时预测有三种方法,包括predict,predict_log_proba和predict_proba。由于方法和GaussianNB完全一样,这里就不累述了。 

4. BernoulliNB类使用总结

    BernoulliNB假设特征的先验概率为二元伯努利分布,即如下式:

P(Xj=xjl|Y=Ck)=P(j|Y=Ck)xjl+(1P(j|Y=Ck))(1xjl)

    此时 l l 只有两种取值。xjl只能取值0或者1。

class sklearn.naive_bayes.BernoulliNB(alpha=1.0, binarize=0.0,
fit_prior=True, class_prior=None)

    BernoulliNB一共有4个参数,其中3个参数的名字和意义和MultinomialNB完全相同。唯一增加的一个参数是binarize。这个参数主要是用来帮BernoulliNB处理二项分布的,可以是数值或者不输入。如果不输入,则BernoulliNB认为每个数据特征都已经是二元的。否则的话,小于binarize的会归为一类,大于binarize的会归为另外一类。

    在使用BernoulliNB的fit或者partial_fit方法拟合数据后,我们可以进行预测。此时预测有三种方法,包括predict,predict_log_proba和predict_proba。由于方法和GaussianNB完全一样,这里就不累述了。


若有错误,欢迎拍砖指正。。。

要下载sklearn.naive_bayes模块,你需要先安装scikit-learn。你可以通过以下命令使用pip来安装scikit-learn: ``` pip install scikit-learn ``` 安装完成后,你就可以在Python中导入sklearn.naive_bayes模块了。例如,你可以使用以下代码导入MultinomialNB类: ``` from sklearn.naive_bayes import MultinomialNB ``` 这样你就可以使用MultinomialNB类来构建朴素贝叶斯分类器了。MultinomialNB类适用于处理特征是离散数据的情况,比如文本分类中的以词频为特征的情况。如果你想了解更多关于MultinomialNB类的详细信息,可以参考《小瓜讲机器学习——分类算法(三)朴素贝叶斯法(naive Bayes)算法原理及Python代码实现》中的介绍。 #### 引用[.reference_title] - *1* *3* [[数据挖掘之scikit-learn] sklean.naive_bayes实例详解](https://blog.csdn.net/u012915522/article/details/98960595)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down28v1,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [python_sklearn机器学习算法系列之sklearn.naive_bayes朴树贝叶斯算法](https://blog.csdn.net/weixin_42001089/article/details/79952245)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down28v1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值