pip 安装一些问题:cannot import name ‘Feature‘ from ‘setuptools‘ //python setup.py egg_info//openssl升级安装 问题:ImportError: cannot import name ‘Feature’ from ‘setuptools’解决:pip install --upgrade pip setuptools==45.2.0
windows10安装docker Desktop 可制作镜像 Linux上安装docker比较简单,只需直接安装docker软件即可。docker可运行在Linux和虚拟化环境中,对于windows系统怎么安装呢?一、hyper-v开启;(开启虚拟化)Wsl更新至最新版本(当发现开启后仍无法正常使用时)二、安装 docker Desktop查看安装是否完成:三、制作镜像在docker hub上搜索需要的镜像,查看下载的命令ducker pull centos7安装gccyum -y install gcc gcc-c++ kernel-d
PLATO-2: Towards Building an Open-Domain Chatbot via Curriculum Learning PLATO-2: Towards Building an Open-Domain Chatbot via Curriculum Learning开放域中文闲聊论文:https://arxiv.org/abs/2006.16779Git:代码先mark ,实战后再来说
解决服务器上中文显示乱码问题 1、当服务器上编写或显示中文文件名称出现乱码时。需要配置 /etc/profile永久修改:echo "export LANG=“zh_CN.UTF-8” >> /etc/proflileecho "export LC_CTYPE=“zh_CN.UTF-8” >> /etc/proflilesource /etc/profile2、字符集相关locale 查看...
源码编译安装 configure ;make ;make install 配置(configure)、编译(make)、安装( make install ).这些都是典型的使用GNU的AUTOCONF和AUTOMAKE产生的程序的安装步骤一、基本信息1、./configure 是用来检测你的安装平台的目标特征的。比如它会检测你是不是有CC或GCC,并不是需要CC或GCC,它是个shell脚本。2、make 是用来编译的,它从Makefile中读取指令,然后编译。3、make install是用来安装的,它也从Makefile中读取指令,安装到指定的位置。注意:AUTO
挂载镜像,安装rpm包 1、下载(获取)iso镜像,找到iso并上传到suse服务器2、要先新建一个目录挂载的目录,用命令 mkdir /mnt/iso3、将iso文件mount到该目录上,命令如下:mount -o loop SLES-11-SP2-DVD-x86_64-GM-DVD1.iso /mnt/iso4、增加zypper安装源,命令如下:zypper addrepo /mnt/iso/ suse11.iso5、执行命令:zypper refresh 刷新生效,ISO被识别为yast源
2021-01-11 python 学习1、cast 调整数值类型代码tf.cast( ) 或者K.cast( ) 是执行 tensorflow 中的张量数据类型转换,比如读入的图片是int8类型的,一定要在训练的时候把图片的数据格式转换为float32.这样就能够将其转换成 0 或 1 的序列,进行one-hot encoding。例子:源码:def cast(typ, val):· · """Cast a value to a type.· · · This returns the
GPT GPT是“Generative Pre-Training”的简称,是指的生成式的预训练。GPT采用两阶段过程,第一个阶段是利用语言模型进行预训练,第二阶段通过Fine-tuning的模式解决下游任务。下图展示了GPT的预训练过程。GPT l论文代码 https://github.com/openai/finetune-transformer-lmGPT-2https://d4mucfpksywv.cloudfront.net/better-language-models/language-model
NQG传统算法(非预训练算法)-- copy机制 1、COPY 机制:源自论文 :Incorporating Copying Mechanism in Sequence-to-Sequence Learning 论文首次提出copynet的思路,同时结合了generative和copy两种方式,对OOV词采用直接copy的方式。2、Pointing Unknown WordCaglar Gulcehre, Yoshua Bengio, ACL 2016本篇提出了pointer softmax的机制,为了解决copy or generate 和 w
GAN总述 1、总述论文:A Review on Generative Adversarial Networks: Algorithms, Theory, and Applications生成器和判别器两个任务博弈互相训练,互相促进。后续补充内容。
bert预训练模型将天赋带到生成模型领域 1、SimBERTgit权重,它是以Google开源的BERT模型为基础,基于微软的UniLM思想设计了融检索与生成于一体的任务,来进一步微调后得到的模型,所以它同时具备相似问生成和相似句检索能力。不过当时除了放出一个权重文件和示例脚本之外,未对模型原理和训练过程做进一步说明。在这篇文章里,我们来补充这部分内容。2、UniLM 论文UniLM是一个融合NLU和NLG能力的Transformer模型,由微软在去年5月份提出来的.详情见苏神的博客 https://kexue.fm/archives/74
问题生成03——2019-Improving Question Generation With to the Point Context 要点:识别与答案相关的上下文,并转化为疑问句。难点:如何有效地利用非结构化的文本句子(informativeness)和结构化的与答案相关的关系(faithfulness)中的信息。亮点:作者发现模型可以根据文本中的一个答案生成多个不同类型的问题;关系抽取,根据与答案 关系的不同 可以提问多个问题;与之前的有区别(one-to-one mapping problem)还未详细看论文,放一个别人的笔记先笔记...
问题生成系列学习-2020_Improving Question Generation with Sentence-level Semantic Matching and Answer Positio 问题生成系列学习(2):2020_Improving Question Generation with Sentence-level Semantic Matching and Answer Position Inferringlink :https://arxiv.org/pdf/1912.00879.pdf背景:序列-序列模型将答案及其上下文作为输入,在问题生成方面取得了长足的进展。问题:然而,我们观察到这些方法经常产生错误的问题词或关键词,并从输入中复制与答案无关的词。分析:我们认为,
问题生成论文(question generation)-2020 2020_Toward Subgraph Guided Knowledge Graph Question Generation with Graph Neural Networks2020_Asking Questions the Human Way Scalable Question-Answer Generation from Text Corpus2020_Improving Question Generation with Sentence-level Semantic Matching
fastnlp / fastHan实践:中文自然语言处理工具 fastHan是基于fastNLP与pytorch实现的中文自然语言处理工具,像spacy一样调用方便。git源地址pip install fastHan==1.2https://github.com/fastnlp/fastHanfastHan需要以下依赖的包:torch>=1.0.0fastNLP>=0.5.0安装成功。实验:...
问题生成(question-generation)论文汇总 1、综述:Recent Advances in Neural Question Generation-2019地址2、其他论文:任务为输入段落和答案,输出生成问题主要处理了在问题生成(Question Generation,QG)中,长文本(多为段落)在seq2seq模型中表现不佳的问题。长文本在生成高质量问题方面不可或缺。问题:在问题生成(Question Generation,QG)中,长文本(多为段落)在seq2seq模型中表现不佳。段落和答案编码 双向RNN来进行encode,针对文章级的
机器阅读理解综述:2019—Neural Machine Reading Comprehension_Methods and Trends 机器阅读理解综述:2019—Neural Machine Reading Comprehension_Methods and Trends1、主要内容此论文对机器阅读理解的任务分类、数据集和主要模型做了分析。任务:定义:分类:1.1Cloze Tests 完形填空2.2 Multiple Choice 单项选择2.3 Span Extraction 区间抽取2.4 Free Answering 自由形式一些示例:A few examples of MRC datasets该数据
excel快速按照函数补充10000行数据ID 需要在10000行数据中补充ID序号,手动数据不显示,查找对应快捷键,补充下。1、写函数如: 鼠标停留在A2上,输入=ROW(A2)-1回车。2、选定需要填充的区域左侧 A2:A10000回车。3、执行函数Ctrl + D...