基于奇异值分解(SVD)的图像压缩
基于Matlab,将奇异值分解(SVD)用于图像的压缩,并同步显示奇异值的大小分布曲线、奇异值个数对压缩率的影响。对奇异值分解用于图像压缩整个过程的关键步骤都有图像记录。
完整代码如下:
%%%%%%%%%%%%%%%%%%%%%%%%%%
%修改第9行的图像路径即可,图像格式不限
%2013.1.12 yangxin_szu
%%%%%%%%%%%%%%%%%%%%%%%%%%
%%
clear all;
clc;
%导入图像
X = imread('F:\M_Material\egle.bmp');
if (size(X,3) ~= 1)
X = rgb2gray(X);
end
%奇异值分解
[U S V] = svd(double(X));
%绘制奇异值的分布曲线
plot(diag(S),'b-','LineWidth',3);
title('图像矩阵的奇异值');
ylabel('奇异值');
%图像大小
[m n] = size(X);
%图像矩阵的秩
Rank = rank(double(X));
%显示原图
figure,subplot(1,2,1),imshow(X);
Image_Rank = ['图像矩阵的秩 = ' int2str(Rank)];
title(Image_Rank,'Color','b');
%%
%循环改变奇异值选取的个数,动态

本文介绍如何使用Matlab实现奇异值分解(SVD)进行图像压缩。通过展示奇异值的大小分布曲线及奇异值个数对压缩率的影响,探讨SVD在图像压缩中的关键步骤和效果。
最低0.47元/天 解锁文章
528

被折叠的 条评论
为什么被折叠?



