奇异值分解 SVD 图像压缩 Matlab 压缩率

本文介绍如何使用Matlab实现奇异值分解(SVD)进行图像压缩。通过展示奇异值的大小分布曲线及奇异值个数对压缩率的影响,探讨SVD在图像压缩中的关键步骤和效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基于奇异值分解(SVD)的图像压缩

       基于Matlab,将奇异值分解(SVD)用于图像的压缩,并同步显示奇异值的大小分布曲线、奇异值个数对压缩率的影响。对奇异值分解用于图像压缩整个过程的关键步骤都有图像记录。

       完整代码如下:

%%%%%%%%%%%%%%%%%%%%%%%%%%
%修改第9行的图像路径即可,图像格式不限
%2013.1.12 yangxin_szu
%%%%%%%%%%%%%%%%%%%%%%%%%%
%%
clear all;
clc;
%导入图像
X = imread('F:\M_Material\egle.bmp');
if (size(X,3) ~= 1) 
   X = rgb2gray(X);
end
%奇异值分解
[U S V] = svd(double(X));
%绘制奇异值的分布曲线
plot(diag(S),'b-','LineWidth',3);
title('图像矩阵的奇异值');
ylabel('奇异值');
%图像大小
[m n] = size(X);
%图像矩阵的秩
Rank = rank(double(X));
%显示原图
figure,subplot(1,2,1),imshow(X);
Image_Rank = ['图像矩阵的秩 = ' int2str(Rank)];
title(Image_Rank,'Color','b');
%%
%循环改变奇异值选取的个数,动态
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值