Redis的高级数据结构HyperLogLog

前言

最近研究HyperLogLog,网上查了查资料,这里记录一下

什么是HyperLogLog 

HyperLogLog 是最早由 Flajolet 及其同事在 2007 年提出的一种 估算基数的近似最优算法。但跟原版论文不同的是,好像很多书包括 Redis 作者都把它称为一种 新的数据结构(new datastruct) (算法实现确实需要一种特定的数据结构来实现)

统计需求

思考这样的一个场景: 

    如果你负责开发维护一个大型的网站,有一天老板找产品经理要网站上每个网页的 UV(独立访客,每个用户每天只记录一次),然后让你来开发这个统计模块,你会如何实现?

如果统计 PV(浏览量,用户没点一次记录一次),那非常好办,给每个页面配置一个独立的 Redis 计数器就可以了,把这个计数器的 key 后缀加上当天的日期。这样每来一个请求,就执行 INCRBY 指令一次,最终就可以统计出所有的 PV 数据了。

但是 UV 不同,它要去重,同一个用户一天之内的多次访问请求只能计数一次。这就要求了每一个网页请求都需要带上用户的 ID,无论是登录用户还是未登录的用户,都需要一个唯一 ID 来标识。

你也许马上就想到了一个 简单的解决方案:那就是 为每一个页面设置一个独立的 set 集合 来存储所有当天访问过此页面的用户 ID。但这样的 问题 就是:

  1. 存储空间巨大: 如果网站访问量一大,你需要用来存储的 set 集合就会非常大,如果页面再一多.. 为了一个去重功能耗费的资源就可以直接让你 老板打死你
  2. 统计复杂: 这么多 set 集合如果要聚合统计一下,又是一个复杂的事情;

 

基数统计的常用方法

对于上述这样需要 基数统计 的事情,通常来说有两种比 set 集合更好的解决方案:

第一种:B 树

B 树最大的优势就是插入和查找效率很高,如果用 B 树存储要统计的数据,可以快速判断新来的数据是否存在,并快速将元素插入 B 树。要计算基础值,只需要计算 B 树的节点个数就行了。

不过将 B 树结构维护到内存中,能够解决统计和计算的问题,但是 并没有节省内存

第二种:bitmap

bitmap 可以理解为通过一个 bit 数组来存储特定数据的一种数据结构,每一个 bit 位都能独立包含信息,bit 是数据的最小存储单位,因此能大量节省空间,也可以将整个 bit 数据一次性 load 到内存计算。如果定义一个很大的 bit 数组,基础统计中 每一个元素对应到 bit 数组中的一位,例如:

 

bitmap 还有一个明显的优势是 可以轻松合并多个统计结果,只需要对多个结果求异或就可以了,也可以大大减少存储内存。可以简单做一个计算,如果要统计 1 亿 个数据的基数值,大约需要的内存100_000_000/ 8/ 1024/ 1024 ≈ 12 M,如果用 32 bit 的 int 代表 每一个 统计的数据,大约需要内存32 * 100_000_000/ 8/ 1024/ 1024 ≈ 381 M

可以看到 bitmap 对于内存的节省显而易见,但仍然不够。统计一个对象的基数值就需要 12 M,如果统计 1 万个对象,就需要接近 120 G,对于大数据的场景仍然不适用。

第三种:HyperLogLog原理

真实的 HyperLogLog

有一个神奇的网站,可以动态地让你观察到 HyperLogLog 的算法到底是怎么执行的:http://content.research.neustar.biz/blog/hll.html

HyperLogLog实际上不会存储每个元素的值,它使用的是概率算法,通过存储元素的hash值的第一个1的位置,来计算元素数量。

HyperLogLog,下面简称为HLL,它是 LogLog 算法的升级版,作用是能够提供不精确的去重计数。存在以下的特点:

  • 代码实现较难。
  • 能够使用极少的内存来统计巨量的数据,在 Redis 中实现的 HyperLogLog,只需要12K内存就能统计2^64个数据。
  • 计数存在一定的误差,误差率整体较低。标准误差为 0.81% 。
  • 误差可以被设置辅助计算因子进行降低。

稍微对编程中的基础数据类型内存占用有了解的同学,应该会对其只需要12K内存就能统计2^64个数据而感到惊讶。为什么这样说呢,下面我们举下例子:

Java 语言来说,一般long占用8字节,而一字节有8位,即:1 byte = 8 bit,即long数据类型最大可以表示的数是:2^63-1。对应上面的2^64个数,假设此时有2^63-1这么多个数,从 0 ~ 2^63-1,按照long以及1k = 1024字节的规则来计算内存总数,就是:((2^63-1) * 8/1024)K,这是很庞大的一个数,存储空间远远超过12K。而 HyperLogLog 却可以用 12K 就能统计完。

 

参考:

https://www.wmyskxz.com/2020/03/02/reids-4-shen-qi-de-hyperloglog-jie-jue-tong-ji-wen-ti/

https://zhuanlan.zhihu.com/p/58519480

https://juejin.im/post/6844903785744056333

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值