这篇文件是对Linux IO磁盘原理的讲解,参考了网络上其他信息整理而成,提供给大家了解及学习参考。
磁盘介绍:
磁盘是可以持久化存储的设备,根据存储介质的不同,常见磁盘可以分为两类:机械磁盘和固态磁盘。
机械磁盘,也称为硬盘驱动器(Hard Disk Driver),通常缩写为 HDD。机械磁盘主要由盘片和读写磁头组成,数据就存储在盘片的环状磁道中。在读写数据前,需要移动读写磁头,定位到数据所在的磁道,然后才能访问数据。
显然,如果 I/O 请求刚好连续,那就不需要磁道寻址,自然可以获得最佳性能。这其实就是我们熟悉的,连续 I/O 的工作原理。与之相对应的,当然就是随机 I/O,它需要不停地移动磁头,来定位数据位置,所以读写速度就会比较慢。
固态磁盘(Solid State Disk),通常缩写为 SSD,由固态电子元器件组成。固态磁盘不需要磁道寻址,所以,不管是连续 I/O,还是随机 I/O 的性能,都比机械磁盘要好得多。
其实,无论机械磁盘,还是固态磁盘,相同磁盘的随机 I/O 都要比连续 I/O 慢很多,原因也很明显。
对机械磁盘来说,我们刚刚提到过的,由于随机 I/O 需要更多的磁头寻道和盘片旋转,它的性能自然要比连续 I/O 慢。
而对固态磁盘来说,虽然它的随机性能比机械硬盘好很多,但同样存在“先擦除再写入”的限制。随机读写会导致大量的垃圾回收,所以相对应的,随机 I/O 的性能比起连续 I/O 来,也还是差了很多。
此外,连续 I/O 还可以通过预读的方式,来减少 I/O 请求的次数,这也是其性能优异的一个原因。很多性能优化的方案,也都会从这个角度出发,来优化 I/O 性能。
此外,机械磁盘和固态磁盘还分别有一个最小的读写单位。
机械磁盘的最小读写单位是扇区,一般大小为 512 字节。
而固态磁盘的最小读写单位是页,通常大小是 4KB、8KB 等。
如果每次都读写 512 字节这么小的单位的话,效率很低。所以,文件系统会把连续的扇区或页,组成逻辑块,然后以逻辑块作为最小单元来管理数据。常见的逻辑块的大小是 4KB,也就是说,连续 8 个扇区,或者单独的一个页,都可以组成一个逻辑块。
除了可以按照存储介质来分类,另一个常见的分类方法,是按照接口来分类,比如可以把硬盘分为 IDE(Integrated Drive Electronics)、SCSI(Small Computer System Interface) 、SAS(Serial Attached SCSI) 、SATA(Serial ATA) 、FC(Fibre Channel) 等。
不同的接口,往往分配不同的设备名称。比如, IDE 设备会分配一个 hd 前缀的设备名,SCSI 和 SATA 设备会分配一个 sd 前缀的设备名。如果是多块同类型的磁盘,就会按照 a、b、c 等的字母顺序来编号。
除了磁盘本身的分类外,当你把磁盘接入服务器后,按照不同的使用方式,又可以把它们划分为多种不同的架构。
最简单的,就是直接作为独立磁盘设备来使用。这些磁盘,往往还会根据需要,划分为不同的逻辑分区,每个分区再用数字编号。比如 /dev/sda ,还可以分成两个分区 /dev/sda1 和 /dev/sda2。
另一个比较常用的架构,是把多块磁盘组合成一个逻辑磁盘,构成冗余独立磁盘阵列,也就是 RAID(Redundant Array of Independent Disks),从而可以提高数据访问的性能,并且增强数据存储的可靠性。
根据容量、性能和可靠性需求的不同,RAID 一般可以划分为多个级别,如 RAID0、RAID1、RAID5、RAID10 等。
RAID0 有最优的读写性能,但不提供数据冗余的功能。
而其他级别的 RAID,在提供数据冗余的基础上,对读写性能也有一定程度的优化。具体大家自行百度吧,这里不再详细介绍。
最后一种架构,是把这些磁盘组合成一个网络存储集群,再通过 NFS、SMB、iSCSI 等网络存储协议,暴露给服务器使用。
其实在 Linux 中,磁盘实际上是作为一个块设备来管理的,也就是以块为单位读写数据,并且支持随机读写。每个块设备都会被赋予两个设备号,分别是主、次设备号。主设备号用在驱动程序中,用来区分设备类型;而次设备号则是用来给多个同类设备编号。
查看IO状态iostat
iostat 是最常用的磁盘 I/O 性能观测工具,它提供了每个磁盘的使用率、IOPS、吞吐量等各种常见的性能指标,当然,这些指标实际上来自 /proc/diskstats。
在IO问题排查中,有时候用到iostat -x这命令,详细示例如下:
可以看到%idle(%idle小于70%说明IO压力已经比较大了)和%util的值都处于非正常状态。
从这里你可以看到,iostat 提供了非常丰富的性能指标。
avg-cpu说明:
%user:在用户级别运行所使用的CPU的百分比。
%nice:带nice值(和进程优先级相关)的用户模式下运行所使用的CPU的百分比。
%system:在系统级别运行所使用CPU的百分比。
%iowait:CPU等待IO完成的时间百分比。(单个iowait指标值偏高并不能说明磁盘存在IO瓶颈,下面会有详述。)
%steal:管理程序维护另一个虚拟处理器时,虚拟CPU的无意识等待时间的百分比。
%idle:CPU空闲时间的百分比。(idle值高,表示CPU较空闲。)
device说明:
第一列的 Device 表示磁盘设备的名字,其他各列指标,虽然数量较多,但是每个指标的含义都很重要。为了方便你理解,我把它们总结成了一个表格。
这些指标中,你要注意:
%util ,就是我们前面提到的磁盘 I/O 使用率;
r/s+ w/s ,就是 IOPS;
rkB/s+wkB/s ,就是吞吐量;
r_await+w_await ,就是响应时间。
在观测指标时,也别忘了结合请求的大小( rareq-sz 和 wareq-sz)一起分析。
正常情况下svctm应该是小于await值的,而svctm的大小和磁盘性能有关,CPU、内存的负荷也会对svctm值造成影响,过多的请求也会间接的导致svctm值的增加。await值的大小一般取决于svctm的值和IO队列的长度以及IO请求模式,如果scvtm比较接近await,说明IO几乎没有等待时间;如果await远大于svctm,说明IO请求队列太长,IO响应太慢,则需要进行必要优化。
如果%util接近100%,说明产生的IO请求太多,IO系统已经满负荷,该磁盘可能存在瓶颈。
队列长度(avgqu-sz)也可作为衡量系统 I/O 负荷的指标,但由于 avgqu-sz 是按照单位时间的平均值,所以不能反映瞬间的 I/O 泛洪,如果avgqu-sz比较大,则说明有大量IO在等待。
(可以看完下面一节再来回顾这段内容。)
相关原理
对于await, svctm以及%util等,光从概念上来说,比较晦涩,可以通过下图的磁盘IO流程来加深理解:
简要图:
详细图
(图片来自 Linux Storage Stack Diagram )
磁盘IO场景
- 用户调用标准C库进行IO操作,数据流为:应用程序buffer->C库标准IObuffer->文件系统page cache->通过具体文件系统到磁盘。
- 用户调用文件IO,数据流为:应用程序buffer->文件系统page cache->通过具体文件系统到磁盘。
- 用户打开文件时使用O_DIRECT,绕过page cache直接读写磁盘。
- 用户使用类似dd工具,并使用direct参数,绕过系统cache与文件系统直接写磁盘。
发起IO请求请的步骤简析(以最长链路为例)
写操作:
- 用户调用fwrite把数据写C库标准IObuffer后就返回,即写操作通常是个异步操作。
- 数据到C库标准IObuffer后,不会立即刷新到磁盘,会将多次小数据量相邻写操作先缓存起来合并,最终调用write函数一次性写入(或者将大块数据分解多次write调用)page cache。
- 数据到page cache后也不会立即刷新到磁盘,内核有pdflush线程在不停的检测脏页,判断是否要写回到磁盘中,如果是则发起磁盘IO请求。
读操作: - 用户调用fread到C库标准IObuffer读取数据,如果成功则返回,否则继续。
- 到page cache读取数据,如果成功则返回,否则继续。
- 发起IO请求,读取到数据后缓存buffer和C库标准IObuffer并返回。可以看出,读操作是同步请求。
IO请求处理
- 通用块层根据IO请求构造一个或多个bio结构并提交给调度层。bio结构描述对一个磁盘扇区读/写操作。
- 调度器将bio结构进行排序和合并组织成队列且确保读写操作尽可能理想:将一个或多个进程的读操作合并到一起读,将一个或多个进程的写操作合并到一起写,尽可能变随机为顺序(因为随机读写比顺序读写要慢),读必须优先满足,而写也不能等太久。
IO调度算法
Linux的IO调度器有时也称之为磁盘调度器,工作机制是控制块设备的请求队列,确定队列中那些IO的优先级更高以及何时下发IO到块设备,以此来减少磁盘寻到时间,从而提高系统的吞吐量。
目前Linux共有如下几种IO调度算法:
NOOP算法
NOOP算法的全写为No Operation。该算法实现了最最简单的FIFO队列,所有IO请求大致按照先来后到的顺序进行操作。之所以说“大致”,原因是NOOP在FIFO的基础上还做了相邻IO请求的合并,并不是完完全全按照先进先出的规则满足IO请求。
假设有如下的io请求序列:
100,500,101,10,56,1000
NOOP将会按照如下顺序满足:
100(101),500,10,56,1000
2、CFQ
CFQ算法的全写为Completely Fair Queuing。该算法的特点是按照IO请求的地址进行排序,而不是按照先来后到的顺序来进行响应。
假设有如下的io请求序列:
100,500,101,10,56,1000
CFQ将会按照如下顺序满足:
100,101,500,1000,10,56
CFQ是默认的磁盘调度算法,对于通用服务器来说最好的选择。它视图均匀地分布对IO带宽的访问。CFQ为每个进程单独创建一个队列来管理该进程所产生的请求,也就是说每个进程一个队列,各队列之间的调度使用时间片来调度,以此来保证每个进程都能被很好的分配到IO带宽。IO调度器每次执行一个进程的4次请求。在传统的SAS盘上,磁盘寻道花去了绝大多数的IO响应时间。CFQ的出发点是对IO地址进行排序,以尽量少的磁盘旋转次数来满足尽可能多的IO请求。在CFQ算法下,SAS盘的吞吐量大大提高了。但是相比于NOOP的缺点是,先来的IO请求并不一定能被满足,可能会出现饿死的情况。
3、DEADLINE
DEADLINE在CFQ的基础上,解决了IO请求饿死的极端情况。除了CFQ本身具有的IO排序队列之外,DEADLINE额外分别为读IO和写IO提供了FIFO队列。读FIFO队列的最大等待时间为500ms,写FIFO队列的最大等待时间为5s。FIFO队列内的IO请求优先级要比CFQ队列中的高,而读FIFO队列的优先级又比写FIFO队列的优先级高。优先级可以表示如下:
FIFO(Read) > FIFO(Write) > CFQ
4、ANTICIPATORY
CFQ和DEADLINE考虑的焦点在于满足零散IO请求上。对于连续的IO请求,比如顺序读,并没有做优化。为了满足随机IO和顺序IO混合的场景,Linux还支持ANTICIPATORY调度算法。ANTICIPATORY的在DEADLINE的基础上,为每个读IO都设置了6ms的等待时间窗口。如果在这6ms内OS收到了相邻位置的读IO请求,就可以立即满足。 anticipatory 算法通过增加等待时间来获得更高的性能,假设一个块设备只有一个物理查找磁头(例如一个单独的SATA硬盘),将多个随机的小写入流合并成一个大写入流(相当于给随机读写变顺序读写),使用这个原理来使用读取写入的延时换取最大的读取写入吞吐量.适用于大多数环境,特别是读取写入较多的环境。
不同的磁盘调度算法(以及相应的IO优化手段)对Kafka这类依赖磁盘运转的应用的影响很大,建议根据不同的业务需求来测试选择合适的磁盘调度算法(以后的文章中会有相关的测试介绍)。
查看设备当前的IO调度器:cat /sys/block/{DEVICE-NAME}/queue/scheduler。其中{DEVICE-NAME}指的是磁盘设备的名称,即文章开头iostat -x中Device下方的vda,vdb等。
举例:
[root@hidden ~]# cat /sys/block/vda/queue/scheduler
noop anticipatory deadline [cfq]
修改当前的IO调度器: echo {SCHEDULER-NAME} > /sys/block/{DEVICE-NAME}/queue/scheduler。其中{SCHEDULER-NAME}取值为noop、anticipatory、deadline、cfq其中之一。
举例:
[root@hidden ~]# echo noop > /sys/block/vda/queue/scheduler
[root@hidden ~]# cat /sys/block/vda/queue/scheduler
[noop] anticipatory deadline cfq
以上设置重启之后会失效,如果要想重启后配置仍然生效,需要在内核启动参数中将elevator={SCHEDULER-NAME}写入/boot/grub/menu.lst文件中。在修改这个文件之前最好先备份一份,然后将elevator={SCHEDULER-NAME}添加到文件末尾即可。
参考:
https://juejin.cn/post/6844903974877790222
https://blog.csdn.net/u013256816/article/details/78945085