Spark Launcher Java API提交Spark算法

在介绍之前,我先附上spark 官方文档地址:

http://spark.apache.org/docs/latest/api/java/org/apache/spark/launcher/package-summary.html

个人源码github地址:

https://github.com/yyijun/framework/tree/master/framework-spark

1.主要提交参数说明

 spark-submit \ 
    --master yarn \ 
    --deploy-mode cluster \ 
    --driver-memory 4g \
    --driver-cores 4 \
    --num-executors 20 \
    --executor-cores 4 \
    --executor-memory  10g \
    --class com.yyj.train.spark.launcher.TestSparkLauncher \ 
    --conf spark.yarn.jars=hdfs://hadoop01.xxx.xxx.com:8020/trainsparklauncher/jars/*.jar \ 
    --jars $(ls lib/*.jar| tr '\n' ',') \ 
    lib/ train-spark-1.0.0.jar

--conf spark.yarn.jars:提交算法到yarn集群时算法依赖spark安装包lib目录下的jar包,如果不指定,则每次启动任务都会先上传相关依赖包,耗时严重;

--jars:算法依赖的相关包,spark standalone模式、yarn模式都有用,多个依赖包用逗号”,”分隔;

2.Idea提交算法到yarn集群

2.1.入口参数配置

    val spark = SparkSession
      .builder
      .appName("TestSparkLauncher")
      .master("yarn")
      .config("deploy.mode", "cluster")
      .config("spark.yarn.jars", "hdfs://hadoop01.xxx.xxx.com:8020/trainsparklauncher/jars/*.jar")
      .config("spark.sql.warehouse.dir", "/user/hive/warehouse")
      .enableHiveSupport()
      .getOrCreate()

2.2.pom.xml配置

<dependency>
      <groupId>org.apache.spark</groupId>
      <artifactId>spark-yarn_2.11</artifactId>
      <version>2.1.0</version>
</dependency>

3.提交准备

1、从大数据平台下载hadoop相关的xml配置文件:
    core-site.xml:必须;
    hdfs-site.xml:必须;
    hive-site.xml:提交的算法里面用到spark on hive时需要此文件;
    yarn-site.xml:提交算法到yarn时必须要此文件;

2、准备自己的算法包,这里对应替换为自己的算法包:
    train-spark-1.0.0.jar和train-common-1.0.0.jar

3、上传spark安装目录下jars目录下相关的jar包到hdfs:hadoop fs –put –f /opt/cloudera/parcels/SPARK2/lib/spark2/jars /hdfs目录

测试提交算法

package com.yyj.framework.spark.launcher;

import java.io.File;
import java.util.HashMap;
import java.util.Map;

/**
 * Created by yangyijun on 2019/5/20.
 * 提交spark算法入口类
 */
public class SparkLauncherMain {

    public static void main(String[] args) {
        System.out.println("starting...");
        String confPath = "/Users/yyj/workspace/alg/src/main/resources";
        System.out.println("confPath=" + confPath);

        //开始构建提交spark时依赖的jars
        String rootPath = "/Users/yyj/workspace/alg/lib/";
        File file = new File(rootPath);
        StringBuilder sb = new StringBuilder();
        String[] files = file.list();
        for (String s : files) {
            if (s.endsWith(".jar")) {
                sb.append("hdfs://hadoop01.xxx.xxx.com:8020/user/alg/jars/");
                sb.append(s);
                sb.append(",");
            }
        }
        String jars = sb.toString();
        jars = jars.substring(0, jars.length() - 1);

        Map<String, String> conf = new HashMap<>();
        conf.put(SparkConfig.DEBUG, "false");
        conf.put(SparkConfig.APP_RESOURCE, "hdfs://hadoop01.xxx.xxx.com:8020/user/alg/jars/alg-gs-offline-1.0.0.jar");
        conf.put(SparkConfig.MAIN_CLASS, "com.yyj.alg.gs.offline.StartGraphSearchTest");
        conf.put(SparkConfig.MASTER, "yarn");
        //如果是提交到spark的standalone集群则采用下面的master
        //conf.put(SparkConfig.MASTER, "spark://hadoop01.xxx.xxx.com:7077");
        conf.put(SparkConfig.APP_NAME, "offline-graph-search");
        conf.put(SparkConfig.DEPLOY_MODE, "client");
        conf.put(SparkConfig.JARS, jars);
        conf.put(SparkConfig.HADOOP_CONF_DIR, confPath);
        conf.put(SparkConfig.YARN_CONF_DIR, confPath);
        conf.put(SparkConfig.SPARK_HOME, "/Users/yyj/spark2");
        conf.put(SparkConfig.DRIVER_MEMORY, "2g");
        conf.put(SparkConfig.EXECUTOR_CORES, "2");
        conf.put(SparkConfig.EXECUTOR_MEMORY, "2g");
        conf.put(SparkConfig.SPARK_YARN_JARS, "hdfs://hadoop01.xxx.xxx.com:8020/user/alg/jars/*.jar");
        conf.put(SparkConfig.APP_ARGS, "params");
        SparkActionLauncher launcher = new SparkActionLauncher(conf);
        boolean result = launcher.waitForCompletion();
        System.out.println("============result=" + result);
    }
}

构造SparkLauncher对象,配置Spark提交算法相关参数及说明

 private SparkLauncher createSparkLauncher() {
        logger.info("actionConfig:\n" + JSON.toJSONString(conf, true));
        this.debug = Boolean.parseBoolean(conf.get(SparkConfig.DEBUG));
        Map<String, String> env = new HashMap<>();
        //配置hadoop的xml文件本地路径
        env.put(SparkConfig.HADOOP_CONF_DIR, conf.get(SparkConfig.HADOOP_CONF_DIR));
        //配置yarn的xml文件本地路径
        env.put(SparkConfig.YARN_CONF_DIR, conf.get(SparkConfig.HADOOP_CONF_DIR));
        SparkLauncher launcher = new SparkLauncher(env);
        //设置算法入口类所在的jar包本地路径
        launcher.setAppResource(conf.get(SparkConfig.APP_RESOURCE));
        //设置算法入口类保证包名称及类名,例:com.yyj.train.spark.launcher.TestSparkLauncher
        launcher.setMainClass(conf.get(SparkConfig.MAIN_CLASS));
        //设置集群的master地址:yarn/spark standalone的master地址,例:spark://hadoop01.xxx.xxx.com:7077
        launcher.setMaster(conf.get(SparkConfig.MASTER));
        //设置部署模式:cluster(集群模式)/client(客户端模式)
        launcher.setDeployMode(conf.get(SparkConfig.DEPLOY_MODE));
        //设置算法依赖的包的本地路径,多个jar包用逗号","隔开,如果是spark on yarn只需要把核心算法包放这里即可,
        // spark相关的依赖包可以预先上传到hdfs并通过 spark.yarn.jars参数指定;
        // 如果是spark standalone则需要把所有依赖的jar全部放在这里
        launcher.addJar(conf.get(SparkConfig.JARS));
        //设置应用的名称
        launcher.setAppName(conf.get(SparkConfig.APP_NAME));
        //设置spark客户端安装包的home目录,提交算法时需要借助bin目录下的spark-submit脚本
        launcher.setSparkHome(conf.get(SparkConfig.SPARK_HOME));
        //driver的内存设置
        launcher.addSparkArg(SparkConfig.DRIVER_MEMORY, conf.getOrDefault(SparkConfig.DRIVER_MEMORY, "4g"));
        //driver的CPU核数设置
        launcher.addSparkArg(SparkConfig.DRIVER_CORES, conf.getOrDefault(SparkConfig.DRIVER_CORES, "2"));
        //启动executor个数
        launcher.addSparkArg(SparkConfig.NUM_EXECUTOR, conf.getOrDefault(SparkConfig.NUM_EXECUTOR, "30"));
        //每个executor的CPU核数
        launcher.addSparkArg(SparkConfig.EXECUTOR_CORES, conf.getOrDefault(SparkConfig.EXECUTOR_CORES, "4"));
        //每个executor的内存大小
        launcher.addSparkArg(SparkConfig.EXECUTOR_MEMORY, conf.getOrDefault(SparkConfig.EXECUTOR_MEMORY, "4g"));
        String sparkYarnJars = conf.get(SparkConfig.SPARK_YARN_JARS);
        if (StringUtils.isNotBlank(sparkYarnJars)) {
            //如果是yarn的cluster模式需要通过此参数指定算法所有依赖包在hdfs上的路径
            launcher.setConf(SparkConfig.SPARK_YARN_JARS, conf.get(SparkConfig.SPARK_YARN_JARS));
        }
        //设置算法入口参数
        launcher.addAppArgs(new String[]{conf.get(SparkConfig.APP_ARGS)});
        return launcher;
    }

准spark安装包,用于提交spark算法的客户端,因为提交算法的时候需要用到Spark的home目录下的bin/spark-submit脚本

重命名conf目录下的spark-env.sh脚本,否则会包如下的错误。原因是spark-env.sh里面配置了大数据平台上的路径,而在提交算法的客户端机器没有对应路径

debug模式提交或者非debug模式

 /**
     * Submit spark application to hadoop cluster and wait for completion.
     *
     * @return
     */
    public boolean waitForCompletion() {
        boolean success = false;
        try {
            SparkLauncher launcher = this.createSparkLauncher();
            if (debug) {
                Process process = launcher.launch();
                // Get Spark driver log
                new Thread(new ISRRunnable(process.getErrorStream())).start();
                new Thread(new ISRRunnable(process.getInputStream())).start();
                int exitCode = process.waitFor();
                System.out.println(exitCode);
                success = exitCode == 0 ? true : false;
            } else {
                appMonitor = launcher.setVerbose(true).startApplication();
                success = applicationMonitor();
            }
        } catch (Exception e) {
            logger.error(e);
        }
        return success;
    }

非debug模式提交时,控制台获取处理结果信息

    ///
    // private functions
    ///
    private boolean applicationMonitor() {
        appMonitor.addListener(new SparkAppHandle.Listener() {
            @Override
            public void stateChanged(SparkAppHandle handle) {
                logger.info("****************************");
                logger.info("State Changed [state={0}]", handle.getState());
                logger.info("AppId={0}", handle.getAppId());
            }

            @Override
            public void infoChanged(SparkAppHandle handle) {
            }
        });
        while (!isCompleted(appMonitor.getState())) {
            try {
                Thread.sleep(3000L);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }
        boolean success = appMonitor.getState() == SparkAppHandle.State.FINISHED;
        return success;
    }

    private boolean isCompleted(SparkAppHandle.State state) {
        switch (state) {
            case FINISHED:
                return true;
            case FAILED:
                return true;
            case KILLED:
                return true;
            case LOST:
                return true;
        }
        return false;
    }

可以从处理结果中获取到app ID,用于杀掉yarn任务时使用

4.任务详情

//访问URL:
http://<rm http address:port>/ws/v1/cluster/apps/{appID}

//例子
http://localhost:8088/ws/v1/cluster/apps/application15617064805542301

访问详情地址,返回数据格式如下:

 

"id": "application15617064805542301",--任务ID

"user": "haizhi",--提交任务的用户名称

"name": "TestSparkLauncher",--应用名称

"queue": "root.users.haizhi",--提交队列

"state": "FINISHED",--任务状态

"finalStatus": "SUCCEEDED",--最终状态

"progress": 100,--任务进度

"trackingUI": "History",

"trackingUrl": "http://hadoop01.xx.xxx.com:18088/proxy/application15617064805542301/A",

"diagnostics":"",--任务出错时的主要错误信息

"clusterId": 1561706480554,

"applicationType": "SPARK",--任务类型

"startedTime":  1562808570464,--任务开始时间,单位毫秒

"finishedTime": 1562808621348,--任务结束时间,单位毫秒

"elapsedTime": 50884,--任务耗时,毫秒

"amContainerLogs": "http://hadoop01.xx.xxx.com:8042/node/containerlogs/container15617064805542301_01_000001/haizhi",--任务详细日志

"amHostHttpAddress": "hadoop01.xx.xxx.com:8042",

"memorySeconds": 198648,--任务分配到的内存数,单位MB

"vcoreSeconds": 145,--任务分配到的CPU核数

"logAggregationStatus": "SUCCEEDED"

 

5.rest API杀掉任务请求格式:

  • 请求URL:http://<rm http address:port>/ws/v1/cluster/apps/{appid}/state

  • 请求方式:put

  • 请求参数: { "state": "KILLED" }

例:

请求URL:http://192.168.1.3:18088/ws/v1/cluster/apps/application15617064805542302/state
请求方式:put
请求参数: { "state": "KILLED" }

 

 

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值