机器学习平台整理

本文比较了开源机器学习平台Cube背后的Kubeflow与Airflow和MLflow在工作流管理和MLOps方面的优劣,强调了Kubeflow在大规模和预设模式上的优势,以及Airflow+MLflow在小型系统中的便利性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

开源系列
cube开源一站式云原生机器学习平台:https://blog.csdn.net/luanpeng825485697/article/details/123619334
github:https://github.com/tencentmusic/cube-studio

kubeflow参考
官网:https://www.kubeflow.org/docs/started/
参考:https://www.jianshu.com/p/192f22a0b857
AirFlow/NiFi/MLFlow/KubeFlow进展:https://blog.csdn.net/chenhuipin1173/article/details/100913909
最好的任务编排工具:Airflow vs Luigi vs Argo vs MLFlow

总结
一句话总结就是:kubeflow是一个为 Kubernetes 构建的可组合,便携式,可扩展的机器学习技术栈。
支持的训练架构-https://www.kubeflow.org/docs/components/training/

英文对比:
https://aicurious.io/posts/airflow-mlflow-or-kubeflow-for-mlops/
https://devsamurai.vn/blog/ml-platform-kuberflow-mlflow-argo-airflow/

通用型选airflow
机器学习偏向大规模选kubeflow
机器学习偏向小规模选mlflow


5. How to choose between Airflow+Mlflow, and Kubeflow?

To sum up, I have some recommendations from my personal perspective:

    If your system needs to deal with multiple types of workflow, not just machine learning, Airflow may support you better. It is a mature workflow orchestration frameworks with support for a lot of operators besides machine learning.
    If you want a system with predesigned patterns for machine learning, and run at large scale on Kubenetes clusters, you may want to consider Kubeflow. Many ML specific components in Kubeflow can save your time implementing from scratch in Airflow.
    If you want to deploy MLOps in a small scale system (for example, a workstation, or a laptop), picking Airflow+MLflow stack can eliminate the need of setting up and running a Kubenetes system, and save more resources for the main tasks.

This blog post has briefly shown the differences between three popular MLOps frameworks (Airflow, MLflow and Kubeflow). Hope that it helps you in making decision between 2 stacks (Airflow + MLflow and Kubeflow). If you want to talk more about these frameworks or recommend others, please comment beflow. Thank you very much!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值