【课程系列02】某乎AI大模型全栈工程师-第2期

网盘链接

百度网盘

https://pan.baidu.com/s/1QLkRW_DmIm1q9XvNiOGwtQ

课程收获

  1. 全面覆盖AI大模型知识:课程内容从AI大模型的基础介绍开始,涵盖了大模型时代的必备技术如Prompt Engineering,到大模型开发的新范式,如Function Calling and Plugins,以及机器学习基础等,为学员提供了全面的大模型技术学习路径。
  2. 实战技能教学:通过“基于ChatGLM2的Fine-tuning”、“用LangChain手撕AutoGPT”等课程,强调实战技能的培养,指导学员如何在具体项目中应用大模型技术。
  3. 项目方案与设计:特设有“项目方案分析与设计”课程,引导学员学会如何分析项目需求,设计合理的解决方案,强化了理论与实践的结合。
  4. 行业前沿动态和应用:邀请了客座嘉宾分享“大模型时代的AI产品新挑战”及“怎样抓住大模型时代的产品机遇”,提供了行业前沿的观点和案例,增加了课程的时效性和实用性。
  5. 综合开发能力培养:课程不仅包含了技术学习,还涵盖了产品设计、产品运营和业务沟通等内容,旨在培养具备综合开发能力的AI大模型全栈工程师。

课程目录

AI大模型工程师是指在人工智能大模型领域具有面技术能力的工程师。他们不仅能够熟练掌握深度学习、机器学习等人工智能领域的核心算法和模型架构,还能够进行端到端的开发和实现,具备完整的技术堆识。 首先,AI大模型工程师需要精通深度学习和机器学习的算法原理,包括神经网络、卷积神经网络、循环神经网络等各种模型结构和优化方法。他们需要能够灵活运用这些算法,解决各种复杂的人工智能问题。 其次,AI大模型工程师需要熟练掌握各种开发工具和框架,例如TensorFlow、PyTorch、Keras等,能够在这些框架下进行模型的实现和训练。 此外,AI大模型工程师还需要具备数据处理和分析的能力,能够处理海量的数据,并能够进行数据挖掘和特征工程,为模型训练提供高质量的数据。 最后,AI大模型工程师需要具备工程实现和部署的能力,能够将训练好的模型应用于实际的场景中,包括模型的优化和性能调优,以及模型的部署和服务化。 总之,AI大模型工程师需要具备面的人工智能技术能力,涵盖算法原理、开发工具、数据处理和工程实现等方面,能够独立完成从建模到部署的流程工作。这样的工程师人工智能技术领域具有很高的竞争力,能够为企业和团队带来更多的价值和发展机会。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值