Scikit-learn概述
Scikit-learn是一个开源的Python机器学习库,它建立在NumPy、SciPy和Matplotlib之上,提供了大量的机器学习算法和工具,适用于各种机器学习任务,如分类、回归、聚类、降维等。Scikit-learn的设计遵循简洁、一致的API接口,使得用户可以轻松地从数据预处理到模型评估的整个机器学习流程中进行操作。它还提供了丰富的文档和示例,帮助用户快速上手和解决问题。
Scikit-learn的优点
- 易用性:Scikit-learn提供了简洁且一致的API,使得即使是初学者也能快速上手。它的文档详尽,示例丰富,有助于用户理解和应用各种算法。
- 功能全面:Scikit-learn涵盖了广泛的机器学习算法和工具,包括数据预处理、特征工程、模型选择、评估等,满足了大多数机器学习任务的需求。
- 高效性:Scikit-learn的算法实现经过了优化,能够高效地处理大规模数据集,适合在实际项目中使用。
- 社区支持:Scikit-learn拥有一个活跃的开发者社区,不断有新的功能和改进被贡献出来,用户可以从中获得帮助和支持。
- 集成性:Scikit-learn与其他Python科学计算库(如NumPy、Pandas)无缝集成,方便用户在数据分析和机器学习之间进行切换。
- 开源免费:Scikit-learn是一个开源项目,遵循BSD许可证,用户可以免费使用和修改,适合学术研究和商业项目。
数据集
数据预处理
- 标准化:将特征缩放到零均值和单位方差,使用
StandardScaler
。 - 归一化:将特征缩放到一个范围(如[0,1]),使用
MinMaxScaler
。 - 缺失值处理:使用
SimpleImputer
填充缺失值。 - 编码:将分类变量转换为数值形式,使用
OneHotEncoder
或LabelEncoder
。 - 特征选择:使用
SelectKBest
等方法选择最重要的特征。
StandardScaler
是 Python 中 scikit-learn 库提供的一个工具,用于对数据进行标准化处理。标准化(也称为Z-score标准化)是指将特征数据按比例缩放,使其符合标准正态分布,即均值为0,标准差为1。
使用公式 (x - μ) / σ 对每个特征值进行转换,其中 x 是原始特征值,μ 是均值,σ 是标准差