求最大子序列和

求最大子序列和

比较经典的算法问题,能够很好的体现动态规划的实现,以一点“画龙点睛” 大大精简了算法复杂度,且实现简单。本文中实现了4种:

一般 maxSubSequenceSum0 O(n^3)

简单优化过的算法 maxSubSequenceSum1 O(n^2)

分治法优化的算法 maxSubSequenceSum2 O(n*log(n))

动态规划的算法 maxSubSequenceSum3 O(n)

#include <math.h>

#include "mymath.h"

/*
* 计算序列的某段子序列的和,maxSubSequenceSum0使用
*/
static int subSequenceSum(int a[], int left, int right)
{
    int i, sum = 0;
    for (i = left; i <= right; i++)
    {
        sum = sum + a[i];
    }
    return sum;
}

/*
* 三层遍历求子序列和的最大值,算法复杂度O(n^3)
*/
int maxSubSequenceSum0(int a[], int len)
{
    int i, j;
    int curSum; /* 当前序列和 */
    int maxSum; /* 最大序列和 */

    /* 初始化最大子序列和为序列第一个元素 */
    maxSum = a[0];

    /* 第一层循环定义子序列起始位置 */
    for (i = 0; i < len; i++)
    {
        /* 起始位置为i,初始化当前和为0 */
        curSum = 0;

        /* 第二层循环定义子序列结束位置 */
        for (j = i; j < len; j++)
        {
            /* 第三层循环在函数sumSubseqence中,计算子序列和 */
            curSum =subSequenceSum(a, i, j);

            /* 与最大子序列和比较,更新最大子序列和 */
            if (curSum> maxSum)
            {
               maxSum = curSum;
            }
        }
    }
    return maxSum;
}

/*
* 双层遍历求子序列和的最大值,算法复杂度O(n^2)
*/
int maxSubSequenceSum1(int a[], int len)
{
    int i, j;
    int curSum; /* 当前序列和 */
    int maxSum; /* 最大序列和 */

    /* 初始化最大子序列和为序列第一个元素 */
    maxSum = a[0];

    /* 外层循环定义子序列起始位置 */
    for (i = 0; i < len; i++)
    {
        /* 起始位置为i,初始化当前和为0 */
        curSum = 0;

        /* 内层循环定义子序列结束位置 */
        for (j = i; j < len; j++)
        {
            /* 计算子序列和,并与最大子序列和比较,更新最大子序列和 */
            curSum =curSum + a[j];

            /* 与最大子序列和比较,更新最大子序列和 */
            if (curSum> maxSum)
            {
               maxSum = curSum;
            }
        }
    }
    return maxSum;
}

/*
* 某段字序列中,含左边界元素的字序列和中的最大值,_maxSubSequenceSum2中使用
*/
static int _maxLeftBoderSubSequenceSum(int a[], int left, int right)
{
    int i;
    int sum = 0;
    int maxSum = a[left];
    for (i = left; i <= right; i++)
    {
        sum += a[i];
        if (sum > maxSum)
        {
            maxSum = sum;
        }
    }
    return maxSum;
}

/*
* 某段字序列中,含右边界元素的字序列和中的最大值,_maxSubSequenceSum2中使用
*/
static int _maxRightBoderSubSequenceSum(int a[], int left, int right)
{
    int i;
    int sum = 0;
    int maxSum = a[right];
    for (i = right; i >= left; i--)
    {
        sum += a[i];
        if (sum > maxSum)
        {
            maxSum =sum;
        }
    }
    return maxSum;
}

/*
* 求序列某段子序列中子序列和最大值
*/
static int _maxSubSequenceSum2(int a[], int left, int right)
{
    int center;
    int leftMaxSum;
    int rightMaxSum;
    int maxLeftBorderSum;
    int maxRightBorderSum;

    /* 递归终止条件 */
    if (left == right)
    {
        return a[left];
    }

    /* 分治法递归开始,取中点二分处理 */
    center = (left + right) >> 1; /* center = (left +right) / 2; */

    /* 递归求左右子序列段中最大子序列和 */
    leftMaxSum = _maxSubSequenceSum2(a, left, center);
    rightMaxSum = _maxSubSequenceSum2(a, center + 1, right);

    maxLeftBorderSum = _maxRightBoderSubSequenceSum(a, left,center);
    maxRightBorderSum = _maxLeftBoderSubSequenceSum(a, center +1, right);

    /*
     * 二分后的最大值有三个:
     *    1、leftMaxSum,左段最大子序列和
     *    2、rightMaxSum,右段最大子序列和
     *    3、maxLeftBorderSum+maxRightBorderSum,左段最大含右边界子序列和最大值和右段最大含左边界子序列和最大值,二者之和
     * 这三者中的最大值即为分段前的最大子序列和
     *
     * 分治算法核心部分,解决分治后结果归并问题,具体分析:
     *    这是对分段后的子序列的一种划分,有三种,只需分别求出各种的最大值然后在三者之间取一个最大值即可:
     *       1、子序列全在左段,最大子序列和为leftMaxSum
     *       2、子序列全在右段,最大子序列和为rightMaxSum
     *       3、子序列跨左右段,最大字序列和为maxLeftBorderSum+maxRightBorderSum
     */
    return tmax(leftMaxSum, rightMaxSum,maxLeftBorderSum+maxRightBorderSum);
}

/*
* 分治法实现,算法复杂度O(n*log(n))
* 分:使用二分法进行分段
* 治:详细算法见_maxSubSequenceSum2内描述,简述为:
*    全段最大子序列为以下三者中的最大值
*       左段最大子序列和
*       右段最大子序列和
*       左段最大含右边界子序列和最大值和右段最大含左边界子序列和最大值之和
*/
int maxSubSequenceSum2(int a[], int len)
{
    return _maxSubSequenceSum2(a, 0, len - 1);
}

/*
* 动态规划实现,算法复杂度O(n)
*/
int maxSubSequenceSum3(int a[], int len)
{
    int i;
    int curSum; /* 当前序列和 */
    int maxSum; /* 最大序列和 */

    /* 初始化当前序列和为0 */
    curSum = 0;

    /* 初始化最大子序列和为序列第一个元素 */
    maxSum = a[0];

    /* 开始循环求子序列和 */
    for (i = 0; i < len; i++)
    {
        curSum = curSum + a[i];

        /* 与最大子序列和比较,更新最大子序列和 */
        if (curSum > maxSum)
        {
            maxSum =curSum;
        }

        /* 动态规划部分,舍弃当前和为负的子序列 */
        if (curSum < 0)
        {
            curSum = 0;
        }
    }
    return maxSum;
}

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
智慧校园的建设目标是通过数据整合、全面共享,实现校园内教学、科研、管理、服务流程的数字化、信息化、智能化和多媒体化,以提高资源利用率和管理效率,确保校园安全。 智慧校园的建设思路包括构建统一支撑平台、建立完善管理体系、大数据辅助决策和建设校园智慧环境。通过云架构的数据中心与智慧的学习、办公环境,实现日常教学活动、资源建设情况、学业水平情况的全面统计和分析,为决策提供辅助。此外,智慧校园还涵盖了多媒体教学、智慧录播、电子图书馆、VR教室等多种教学模式,以及校园网络、智慧班牌、校园广播等教务管理功能,旨在提升教学品质和管理水平。 智慧校园的详细方案设计进一步细化了教学、教务、安防和运维等多个方面的应用。例如,在智慧教学领域,通过多媒体教学、智慧录播、电子图书馆等技术,实现教学资源的共享和教学模式的创新。在智慧教务方面,校园网络、考场监控、智慧班牌等系统为校园管理提供了便捷和高效。智慧安防系统包括视频监控、一键报警、阳光厨房等,确保校园安全。智慧运维则通过综合管理平台、设备管理、能效管理和资产管理,实现校园设施的智能化管理。 智慧校园的优势和价值体现在个性化互动的智慧教学、协同高效的校园管理、无处不在的校园学习、全面感知的校园环境和轻松便捷的校园生活等方面。通过智慧校园的建设,可以促进教育资源的均衡化,提高教育质量和管理效率,同时保障校园安全和提升师生的学习体验。 总之,智慧校园解决方案通过整合现代信息技术,如云计算、大数据、物联网和人工智能,为教育行业带来了革命性的变革。它不仅提高了教育的质量和效率,还为师生创造了一个更加安全、便捷和富有智慧的学习与生活环境。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值