tensorflow batch normalization


2016年11月23日 13:14:31

tensorflow batch normalization

def batch_norm(inputs, is_training,is_conv_out=True,decay = 0.999): scale = tf .Variable(tf .ones([inputs .get_shape()[- 1]])) beta = tf .Variable(tf .zeros([inputs .get_shape()[- 1]])) pop_mean = tf .Variable(tf .zeros([inputs .get_shape()[- 1]]), trainable=False) pop_var = tf .Variable(tf .ones([inputs .get_shape()[- 1]]), trainable=False) if is_training: if is_conv_out: batch_mean, batch_var = tf .nn .moments(inputs,[ 0, 1, 2]) else: batch_mean, batch_var = tf .nn .moments(inputs,[ 0]) train_mean = tf .assign(pop_mean, pop_mean * decay + batch_mean * ( 1 - decay)) train_var = tf .assign(pop_var, pop_var * decay + batch_var * ( 1 - decay)) with tf .control_dependencies([train_mean, train_var]): return tf .nn .batch_normalization(inputs, batch_mean, batch_var, beta, scale, 0.001) else: return tf .nn .batch_normalization(inputs, pop_mean, pop_var, beta, scale, 0.001)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25

参考:

  1. Implementing Batch Normalization in Tensorflow
  2. 使用残差网络(residual network)分类mnist image
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值