研究LLMs之前,不如先读读这五篇论文!

本文探讨了LMM(可能是指语言建模或机器学习模型)的关键技术,包括Encoder-Decoder结构在seq2seq任务中的应用,Transformer模型的引入及其实现的注意力机制,BERT的深度双向预训练对于语言理解的提升,以及BART模型如何结合Transformer的编码器和解码器进行序列到序列的预训练,以增强自然语言生成、翻译和理解的能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目标:了解 LMM 背后的主要思想

▪️ Neural Machine Translation by Jointly Learning to Align and Translate
▪️ Attention Is All You Need
▪️ BERT
▪️ Improving Language Understanding by Generative Pre-Training
▪️ BART

在这里插入图片描述

  1. Neural Machine Translation by Jointly Learning to Align and Translate

论文链接:https://arxiv.org/pdf/1409.0473.pdf

提出Encoder-Decoder的经典seq2seq结构,对文本生成,文本摘要、翻译等生成式人物起到重要影响

  1. Attention Is All You Need

论文链接:https://arxiv.org/pdf/1706.03762.pdf

在这里插入图片描述
前两年火爆的论文:transformer

  1. BERT: Pre-training of Deep Bidirectional Transformers for Language

    预训练模型经典之作

论文链接:https://arxiv.org/pdf/1810.04805.pdf

  1. Improving Language Understanding By Generative Pre-Training

在这里插入图片描述
本论文探索一种基于半监督解决语言理解任务方法,使用无监督预训练和监督微调。目标是从大量未标注语料库学习一种普遍的表征,不要求目标任务与未标注语料库在相同领域。

论文链接:https://gwern.net/doc/www/s3-us-west-2.amazonaws.com/d73fdc5ffa8627bce44dcda2fc012da638ffb158.pdf

  1. BART: Denoising Sequence-to-Sequence Pre-training for NaturalLanguage Generation, Translation, and Comprehension

BART:Bidirectional and Auto-Regressive Transformers ,字面意思为双向自回归Transformer,依旧是基于Transformer改造出的模型。在GPT分走了Transformer的解码器部分,BERT分走了Transformer的编码器部分之后,BART终于将“老父亲”的所有“家产”一起打包带走。

论文链接:https://arxiv.org/pdf/1910.13461.pdf

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值