图神经网络
文章平均质量分 92
致Great
为将之道,当先治心
展开
-
图神经网络17-DGL实战:节点分类/回归
对于图神经网络来说,最常见和被广泛使用的任务之一就是节点分类。图数据中的训练、验证和测试集中的每个节点都具有从一组预定义的类别中分配的一个类别,即正确的标注。节点回归任务也类似,训练、验证和测试集中的每个节点都被标注了一个正确的数字。-概述为了对节点进行分类,图神经网络执行了 guide_cn-message-passing中介绍的消息传递机制,利用节点自身的特征和其邻节点及边的特征来计算节点的隐藏表示。消息传递可以重复多轮,以利用更大范围的邻居信息。编写神经网络模型DGL提供了一些内置的图原创 2021-06-28 00:42:06 · 7102 阅读 · 1 评论 -
NAACL 2021 上的图神经网络好文
NAACL 2021Cross-Task Instance Representation Interactions and Label Dependencies for Joint Information Extraction with Graph Convolutional Networks. Minh Van Nguyen, Viet Lai and Thien Huu Nguyen. NAACL 2021 [pdf]基于GCN进行实体表示与信息抽取的联合任务学习Abstract Mea原创 2021-06-27 23:58:10 · 908 阅读 · 0 评论 -
图神经网络16-DGL实战:构建图神经网络(GNN)模块
1 DGL NN模块的构造函数构造函数完成以下几个任务:设置选项。注册可学习的参数或者子模块。初始化参数。 import torch.nn as nn from dgl.utils import expand_as_pair class SAGEConv(nn.Module): def __init__(self, in_feats, out_feats,原创 2021-06-20 22:57:59 · 2085 阅读 · 6 评论 -
图神经网络16-DGL实战:图、节点和边创建与运算
DGL 框架是由纽约大学和 AWS 工程师共同开发的开源框架,旨在为大家提供一个在图上进行深度学习的工具,帮助大家更高效的实现算法。1.1 关于图的基本概念图是用以表示实体及其关系的结构,记为 G=(V,E)G=(V,E)G=(V,E) 。图由两个集合组成,一是节点的集合 VVV ,一个是边的集合 EEE 。 在边集 EEE 中,一条边$ (u,v) $连接一对节点 uuu 和 vvv ,表明两节点间存在关系。关系可以是无向的, 如描述节点之间的对称关系;也可以是有向的,如描述非对称关系。例如,若用图对原创 2021-06-20 16:40:23 · 5234 阅读 · 1 评论 -
图神经网络15-Text-Level-GNN:基于文本级GNN的文本分类模型
论文题目:Text Level Graph Neural Network for Text Classification论文地址:https://arxiv.org/pdf/1910.02356.pdf论文代码:https://github.com/yenhao/text-level-gnn发表时间:2019论文简介与动机1)TextGCN为整个数据集/语料库构建一个异构图(包括(待分类)文档节点和单词节点),边的权重是固定的(单词节点间的边权重是两个单词的PMI,文档-单词节点间的边权重是TF-原创 2021-06-20 16:37:56 · 1397 阅读 · 1 评论 -
图神经网络14-TextGCN:基于图神经网络的文本分类
论文题目:Graph Convolutional Networks for Text Classification论文地址:https://arxiv.org/pdf/1809.05679.pdf论文代码:https://github.com/yao8839836/text_gcn发表时间:AAAI 2019ps:注意这篇论文作者在2018年已经公开在arxiv,我们再此不讨论预训练模型的事情 ^_^论文摘要与简介文本分类是自然语言处理过程中一个非常重要和经典的问题,在论文和实践过程中可以说原创 2021-05-30 23:49:26 · 9862 阅读 · 9 评论 -
图神经网络13-图注意力模型GAT网络详解
论文链接:https://arxiv.org/abs/1710.10903tensorflow代码版本: https://github.com/PetarV-/GATkeras代码版本:https://github.com/danielegrattarola/keras-gatpytorch代码版本:https://github.com/Diego999/pyGAT边预测任务: https://github.com/raunakkmr/GraphSAGE-and-GAT-for-link-pred.原创 2021-05-30 21:49:55 · 5755 阅读 · 0 评论 -
图神经网络12-分子指纹GCN:Neural FPs
1 Neural FPs论文简介论文:Convolutional Networks on Graphs for Learning Molecular Fingerprints 图卷积网络用于学习分子指纹链接:http://arxiv.org/pdf/1509.09292.pdf作者:David Duvenaud†, Dougal Maclaurin†, Jorge Aguilera-Iparraguirre (哈佛大学)来源:NIPS 2015代码:https://github.com/HIP.原创 2021-05-07 21:13:38 · 6462 阅读 · 0 评论 -
图神经网络11-GCN落地的必读论文:GraphSAGE
1 GraphSAGE论文简介论文:Inductive Representation Learning on Large Graphs 在大图上的归纳表示学习链接:https://arxiv.org/abs/1706.02216作者:Hamilton, William L. and Ying, Rex and Leskovec, Jure(斯坦福)来源:NIPS 2017代码:https://github.com/williamleif/graphsage-simple/此文提出的方法叫Gra原创 2021-04-25 17:41:34 · 1813 阅读 · 1 评论
分享