yanta0
码龄7年
关注
提问 私信
  • 博客:26,467
    26,467
    总访问量
  • 12
    原创
  • 2,264,203
    排名
  • 14
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
  • 加入CSDN时间: 2017-11-30
博客简介:

yanta0的博客

博客描述:
python初学,研究生生方向:数据挖掘
查看详细资料
个人成就
  • 获得23次点赞
  • 内容获得1次评论
  • 获得184次收藏
创作历程
  • 1篇
    2019年
  • 10篇
    2018年
  • 1篇
    2017年
成就勋章
TA的专栏
  • 日常练习
    3篇
  • 机器学习
    5篇
  • python
    3篇
  • R
    1篇
创作活动更多

仓颉编程语言体验有奖征文

仓颉编程语言官网已上线,提供版本下载、在线运行、文档体验等功能。为鼓励更多开发者探索仓颉编程语言,现诚邀各位开发者通过官网在线体验/下载使用,参与仓颉体验有奖征文活动。

368人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

常见的11种降维算法的源代码(python)

网上关于降维算法的资料一直是参差不齐,同时大部分资料也不提供算法的源代码,在此我实现了11种常见降维算法的代码,同时也给出了学习这些降维算法的资料连接,希望对学习降维算法的同学有一定的帮助。降维算法资料链接展示PCAhttps://blog.csdn.net/u013719780/article/details/78352262 https://blog.csdn.net...
原创
发布博客 2019.06.14 ·
3131 阅读 ·
6 点赞 ·
0 评论 ·
74 收藏

机器学习-isomap降维算法

ISOMAP(等距特征映射)流形学习:传统的机器学习方法中,数据点和数据点之间的距离和映射函数都是定义在欧式空间中的,然而在实际情况中,这些数据点可能不是分布在欧式空间中的,因此传统欧式空间的度量难以用于真实世界的非线性数据,从而需要对数据的分布引入新的假设。流形学习假设所处理的数据点分布在嵌入于外维欧式空间的一个潜在的流形体上,或者说这些数据点可以构成这样一个潜在的流形体。图1 一个...
原创
发布博客 2018.12.17 ·
2936 阅读 ·
1 点赞 ·
0 评论 ·
25 收藏

R语言实战MDS

原理戳这里:超爱学习:机器学习算法-MDS降维算法​zhuanlan.zhihu.com1度量MDS衡量距离用欧式距离,对鸢尾花数据进行降维:library(stats)library(ggplot2) iris = irisdis_iris = dist(iris[,1:4],p = 2)mds_x = cmdscale(dis_iris)mds_x = data....
原创
发布博客 2018.12.10 ·
3805 阅读 ·
3 点赞 ·
0 评论 ·
23 收藏

机器学习-LDA(线性判别)降维算法

LDA(线性判别算法)不同于PCA方差最大化理论,LDA算法的思想是将数据投影到低维空间之后,使得同一类数据尽可能的紧凑,不同类的数据尽可能分散。因此,LDA算法是一种有监督的机器学习算法。同时,LDA有如下两个假设:(1) 原始数据根据样本均值进行分类。(2) 不同类的数据拥有相同的协方差矩阵。当然,在实际情况中,不可能满足以上两个假设。但是当数据主要是由均值来区分的时候,LDA...
原创
发布博客 2018.12.06 ·
1801 阅读 ·
0 点赞 ·
0 评论 ·
8 收藏

py3生成词云

本文使用py3中flask框架搭建了一个在线评论生成词云的网站。面向人群:拥有python爬虫基础基础,不会使用flask框架也可以良好食用。首先演示一下效果:输入复仇者联盟就可以得到由这部电影的豆瓣评论生成的词云。看完效果,我们讲一下实现的流程。不贴代码。最后会放上代码的github链接。在这里主要讲一下实现步骤。整体布局服务器端1.获得代理IP我们知...
原创
发布博客 2018.12.04 ·
359 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

MDS(多维尺度变换)

MDS(多维尺度变换)多维尺度变换算法解决的问题是:当n个对象之间的相似性给定,确定这些对象在低维空间中的表示,并使其尽可能与原先的相似性大致匹配。高维空间中每一个点代表一个对象,因此点与点之间的距离和对象之间的相似度高度相关。可以这么理解,两个相似的对象在高维空间中由两个距离相近的点所表示,两个不相似的对象在高维空间中由两个距离比较远的点表示。其中MDS又分为classical MDS和...
原创
发布博客 2018.12.04 ·
8780 阅读 ·
10 点赞 ·
0 评论 ·
52 收藏

主成分分析(PCA)

主成分分析(PCA)假设我们一组二维数据点如图(1)所示,我们可以看出这两个维度具有很高的相似性,也就是说两个维度之间具有很高的冗余性,如果我们只想保留一个维度,那么该怎么选择才能尽可能多的保留原始数据的信息呢。我们先对数据进行归一化处理,得到的数据点如图(2)所示。然后将数据点映射到另一个新的空间,如图(3)所示,那么为了尽可能多的保留原始信息,我们需要将数据向x轴做一个投影。然后再将得到的...
原创
发布博客 2018.12.04 ·
492 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

双向链表(c/c++/python)

C-------------------------------------------#include <stdio.h>#include <stdlib.h>typedef struct list{ int data; //数据域 struct list *next; //指针域 后继指针 struct list *pre; //指针域 前驱指针 }l...
原创
发布博客 2018.05.09 ·
266 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

单链表的简单操作(c/c++/python)

C-----------------------------------#include <stdio.h>#include <stdlib.h>typedef struct list{ int data; //数据域 struct list *next; //指针域 }list;//初始化链表int initList(list **head);//队...
原创
发布博客 2018.05.08 ·
242 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

顺序表实现代码(c/c++/python)

C语言--------------------------------------------------------------------------------------------------------#include <stdio.h>#include <stdlib.h>typedef struct{ int *data; int length;...
原创
发布博客 2018.05.04 ·
808 阅读 ·
0 点赞 ·
0 评论 ·
4 收藏

研究生复试机试练习(牛客网)

清华大学1.成绩排序题目描述查找和排序题目:输入任意(用户,成绩)序列,可以获得成绩从高到低或从低到高的排列,相同成绩      都按先录入排列在前的规则处理。   例示:   jack      70   peter     96   Tom       70   smith     67   从高到低  成绩               peter     96       jack     ...
原创
发布博客 2018.03.11 ·
1699 阅读 ·
0 点赞 ·
0 评论 ·
5 收藏

多线程爬虫

这是一篇简单的python多线程爬虫实例
原创
发布博客 2017.12.22 ·
879 阅读 ·
1 点赞 ·
1 评论 ·
4 收藏