Jensen不等式(琴生不等式)

每次用的时候都得查,所以索性之际记录一下
注意凸函数的定义,上凸、下凸、凹、凸的含义是不同的

1.定义

Jensen不等式,又名琴森不等式或詹森不等式(均为音译)。它是一个在描述积分的凸函数值和凸函数的积分值间的关系的不等式。

Jensen不等式的定义公式:

f ( x ) f(x) f(x)为区间[a, b]上的下凸函数,则对任意的 x 1 , x 2 , x 3 , … , x n ∈ [ a , b ] x_1, x_2, x_3, \dots, x_n \in [a, b] x1,x2,x3,,xn[a,b],有不等式:

∑ i = 1 n f ( x i ) n ≥ f ( ∑ i = 1 n x i n ) \frac{\sum^n_{i = 1}f(x_i)}{n} \geq f(\frac{\sum_{i = 1}^{n}x_i}{n}) ni=1nf(xi)f(ni=1nxi)

当且仅当 x 1 = x 2 = x 3 = ⋯ = x n x_1 = x_2 = x_3 = \dots = x_n x1=x2=x3==xn时等号成立。

以下为该公式的加权形式:

  1. 当且仅当 f ( x ) f(x) f(x)为下凸函数时,有:
    f ( ∑ i = 1 n λ i x i ) ≤ ∑ i = 1 n λ i f ( x i ) ,   ∑ i = 1 n λ i = 1 , λ i ≥ 0 f(\sum^{n}_{i = 1} \lambda_ix_i) \leq \sum^{n}_{i = 1} \lambda_if(x_i),\ \sum^{n}_{i = 1}\lambda_i = 1, \lambda_i \geq 0 f(i=1nλixi)i=1nλif(xi), i=1nλi=1,λi0
    当且仅当 x 1 = x 2 = x 3 = ⋯ = x n x_1 = x_2 = x_3 = \dots = x_n x1=x2=x3==xn时等号成立。
  2. 当且仅当 f ( x ) f(x) f(x)为上凸函数时,有:
    f ( ∑ i = 1 n λ i x i ) ≥ ∑ i = 1 n λ i f ( x i ) ,   ∑ i = 1 n λ i = 1 , λ i ≥ 0 f(\sum^{n}_{i = 1} \lambda_ix_i) \geq \sum^{n}_{i = 1} \lambda_if(x_i),\ \sum^{n}_{i = 1}\lambda_i = 1, \lambda_i \geq 0 f(i=1nλixi)i=1nλif(xi), i=1nλi=1,λi0
    当且仅当 x 1 = x 2 = x 3 = ⋯ = x n x_1 = x_2 = x_3 = \dots = x_n x1=x2=x3==xn时等号成立。

2.应用

1.涉及概率密度函数的形式

假设 Ω \Omega Ω是实值的可测子集, f ( x ) f(x) f(x)是一个非负函数(概率密度函数):
∫ − ∞ ∞ f ( x ) d x = 1 \int_{-\infty}^{\infty} f(x)dx = 1 f(x)dx=1

如果 g g g是任意实值可测函数且 φ \varphi φ g g g范围内是凸的,那么:

φ ( ∫ − ∞ ∞ g ( x ) f ( x ) d x ) ≤ ∫ − ∞ ∞ φ [ g ( x ) ] f ( x ) d x \varphi(\int_{-\infty}^{\infty}g(x) f(x) dx) \leq \int_{-\infty}^{\infty}\varphi [g(x)]f(x)dx φ(g(x)f(x)dx)φ[g(x)]f(x)dx

如果 g ( x ) = x g(x) = x g(x)=x,那么这种不等式可以简化为一个非常常用的特例:

φ ( ∫ − ∞ ∞ x f ( x ) d x ) ≤ ∫ − ∞ ∞ φ ( x ) f ( x ) d x \varphi(\int_{-\infty}^{\infty}x f(x) dx) \leq \int_{-\infty}^{\infty}\varphi (x)f(x)dx φ(xf(x)dx)φ(x)f(x)dx

2.信息论

暂时用不到,用到再补充

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

HeartFireY

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值