多元正态性判断

该教程介绍了如何使用SPSS进行多元正态性判断,包括卡方和马氏距离的计算,以及Mardia系数、D-H检验和S-W检验的应用。当Std-MK小于3且D-H及S-W检验的P值大于0.05时,数据可认为符合多元正态分布。
摘要由CSDN通过智能技术生成

 教程B12 多元正态性判断(问卷调查与SPSS应用 1.0)_哔哩哔哩_bilibili

 一、卡方与马氏距离

第一步: 

 第二步:

结果:

 

 

 

 

 二、Mardia系数

 

结果: 

 标准化多元峰度绝对值(Std-MK)如果小于3,则说明符合正态分布。

 三、D-H检验和S-W检验

 

结果:

 

 如果D-H检验的P>0.05,则符合多元正态分布。

  如果S-W检验的P>0.05,则符合多元正态分布。

r语言中,当我们有理由假设原始数据源自多元正态分布总体,并且我们想要通过Mardia's Multivariate Skewness and Kurtosis Test来进行非正态性的评估,特别是马氏距离(multivariate Mahalanobis distance)与χ²(10)分布的关系。当数据接近正态分布时,马氏距离应该呈现卡方分布。 **绘制卡方图步骤**: 1. **安装必要包**:首先需要安装`mvnormtest`包,它包含了一些多元正态性检测的函数。 ```R install.packages("mvnormtest") library(mvnormtest) ``` 2. **计算马氏距离**:假设你有一个名为`data`的数据框,其中包含你的观测值。 ```R # 假设 data 是一个包含 n 行 p 列的矩阵 mahal_dist <- mahalanobis(data, colMeans(data), cov(data)) ``` 3. **创建卡方分布**:将马氏距离转换为卡方分布的形式,通常通过自由度`df = df.residual(p + 1)`,这里`p`是变量的数量。 ```R chi_squared_values <- qchisq(seq(from = 0, to = max(mahal_dist), length.out = 500), df = p + 1) ``` 4. **绘制卡方图**: ```R plot(chi_squared_values, type = "l", xlab = "Mahalanobis Distance", ylab = "CDF of χ² Distribution", main = "Mardia's Test for Bivariate Normality") points(mahal_dist, pnorm(mahal_dist), pch = 19, cex = 0.6, col = "red") # 绘制实际数据点 ``` 5. **观察与分析**:比较马氏距离的分布与理论卡方分布是否吻合。如果大部分距离落在理论卡方分布的区域内,这表明数据可能是正态的。若存在明显偏离,数据可能存在非正态性。 **结论**: - 如果马氏距离的分布大致符合卡方分布,那么我们可以认为数据至少在局部满足二元正态分布。 - 如果存在显著偏差,比如尾部过于分散或集中,那可能表示数据是非正态的,需要进一步探索其他原因,如数据采样、异常值等。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值