python Numpy 函数整理(一)

python Numpy 函数整理(一)

译自 Numpy functions by category

一、数组创建(0/1矩阵)

1、numpy.empty(shape, dtype=float, order=’C’)

参数:
  • shape:int或int类型元组,表示矩阵形状
  • dtype:输出的数据类型
  • order:‘C’ 或者 ‘F’,表示数组在内存的存放次序是以行(C)为主还是以列(F)为主
返回值:

生成随机矩阵

例子:
>>> np.empty([2, 2])
array([[ -9.74499359e+001,   6.69583040e-309],
       [  2.13182611e-314,   3.06959433e-309]])         #random
>>> np.empty([2, 2], dtype=int)
array([[-1073741821, -1067949133],
       [  496041986,    19249760]])                     #random

2、numpy.empty_like(a, dtype=None, order=’K’, subok=True)

参数:
  • a:返回值仿照的矩阵
  • dtype:输出的数据类型
  • order:‘C’ 、 ‘F’、 ‘A’、 ‘K’,表示数组在内存的存放次序是以行(C)为主还是以列(F)为主,‘A’表示以列为主存储,如果a是列相邻的,‘K’表示尽可能与a的存储方式相同
  • subok:bool类型,True:使用a的内部数据类型,False:使用a数组的数据类型
返回值:

生成与a相似(形态和数据类型)的随机矩阵

例子:
>>> a = ([1,2,3], [4,5,6])              # a is array-like
>>> np.empty_like(a)
array([[-1073741821, -1073741821,           3],    #random
       [          0,           0, -1073741821]])
>>> a = np.array([[1., 2., 3.],[4.,5.,6.]])
>>> np.empty_like(a)
array([[ -2.00000715e+000,   1.48219694e-323,  -2.00000572e+000],
       [  4.38791518e-305,  -2.00000715e+000,   4.17269252e-309]])                #random

3、numpy.eye(N, M=None, k=0, dtype=float)

参数:
  • N:行数
  • M:列数
  • k:对角线偏移
  • dtype:输出的数据类型
返回值:

对角矩阵(主对角线上元素都为1,其他元素都为0)——对角线向右上方偏移k(k>0向右上方偏移,k<0向左下方偏移)

例子:
>>> np.eye(2, dtype=int)
array([[1, 0],
       [0, 1]])
>>> np.eye(3, k=1)
array([[ 0.,  1.,  0.],
       [ 0.,  0.,  1.],
       [ 0.,  0.,  0.]])

4、numpy.identity(n, dtype=None)

参数:
  • n:行数(也是列数)
  • dtype:输出的数据类型
返回值:

n*n对角矩阵(主对角线上元素都为1,其他元素都为0)

例子:
>>> np.identity(3)
array([[ 1.,  0.,  0.],
       [ 0.,  1.,  0.],
       [ 0.,  0.,  1.]])

5、numpy.ones(shape, dtype=None, order=’C’)

参数:
  • shape:int或int类型序列,表示矩阵形状
  • dtype:输出的数据类型
  • order:‘C’ 或者 ‘F’,表示数组在内存的存放次序是以行(C)为主还是以列(F)为主
返回值:

给定要求下的单位矩阵

例子:
>>> np.ones(5)
array([ 1.,  1.,  1.,  1.,  1.])
>>> np.ones((5,), dtype=np.int)
array([1, 1, 1, 1, 1])
>>> np.ones((2, 1))
array([[ 1.],
       [ 1.]])
>>> s = (2,2)
>>> np.ones(s)
array([[ 1.,  1.],
       [ 1.,  1.]])

6、numpy.ones_like(a, dtype=None, order=’K’, subok=True)

参数:
  • a:返回值仿照的矩阵
  • dtype:输出的数据类型
  • order:‘C’ 、 ‘F’、 ‘A’、 ‘K’,表示数组在内存的存放次序是以行(C)为主还是以列(F)为主,‘A’表示以列为主存储,如果a是列相邻的,‘K’表示尽可能与a的存储方式相同
  • subok:bool类型,True:使用a的内部数据类型,False:使用a数组的数据类型
返回值:

生成与a相似(形状、数据类型)的单位矩阵

例子:
>>> x = np.arange(6)
>>> x = x.reshape((2, 3))
>>> x
array([[0, 1, 2],
       [3, 4, 5]])
>>> np.ones_like(x)
array([[1, 1, 1],
       [1, 1, 1]])
>>> y = np.arange(3, dtype=np.float)
>>> y
array([ 0.,  1.,  2.])
>>> np.ones_like(y)
array([ 1.,  1.,  1.])

7、numpy.zeros(shape, dtype=float, order=’C’)

参数:
  • shape:int或int类型序列,表示矩阵形状
  • dtype:输出的数据类型
  • order:‘C’ 或者 ‘F’,表示数组在内存的存放次序是以行(C)为主还是以列(F)为主
返回值:

给定要求下的0矩阵

例子:
>>> np.zeros(5)
array([ 0.,  0.,  0.,  0.,  0.])
>>> np.zeros((5,), dtype=np.int)
array([0, 0, 0, 0, 0])
>>> np.zeros((2, 1))
array([[ 0.],
       [ 0.]])
>>> s = (2,2)
>>> np.zeros(s)
array([[ 0.,  0.],
       [ 0.,  0.]])

8、numpy.zeros_like(a, dtype=None, order=’K’, subok=True)

参数:
  • a:返回值仿照的矩阵
  • dtype:输出的数据类型
  • order:‘C’ 、 ‘F’、 ‘A’、 ‘K’,表示数组在内存的存放次序是以行(C)为主还是以列(F)为主,‘A’表示以列为主存储,如果a是列相邻的,‘K’表示尽可能与a的存储方式相同
  • subok:bool类型,True:使用a的内部数据类型,False:使用a数组的数据类型
返回值:

生成与a相似(形状、数据类型)的零矩阵

例子:
>>> x = np.arange(6)
>>> x = x.reshape((2, 3))
>>> x
array([[0, 1, 2],
       [3, 4, 5]])
>>> np.zeros_like(x)
array([[0, 0, 0],
       [0, 0, 0]])
>>> y = np.arange(3, dtype=np.float)
>>> y
array([ 0.,  1.,  2.])
>>> np.zeros_like(y)
array([ 0.,  0.,  0.])

9、numpy.full(shape, fill_value, dtype=None, order=’C’)

参数:
  • shape:int或int类型序列,表示矩阵形状
  • fill_value:填充值
  • dtype:输出的数据类型
  • order:‘C’ 或者 ‘F’,表示数组在内存的存放次序是以行(C)为主还是以列(F)为主
返回值:

给定要求(形状、数据类型)填充的矩阵

例子:
>>> np.full((2, 2), np.inf)
array([[ inf,  inf],
       [ inf,  inf]])
>>> np.full((2, 2), 10)
array([[10, 10],
       [10, 10]])

10、numpy.full_like(a, fill_value, dtype=None, order=’K’, subok=True)

参数:
  • a:返回值仿照的矩阵
  • fill_value:填充值
  • dtype:输出的数据类型
  • order:‘C’ 、 ‘F’、 ‘A’、 ‘K’,表示数组在内存的存放次序是以行(C)为主还是以列(F)为主,‘A’表示以列为主存储,如果a是列相邻的,‘K’表示尽可能与a的存储方式相同
  • subok:bool类型,True:使用a的内部数据类型,False:使用a数组的数据类型
返回值:

生成与a相似(形状、数据类型)的fill_value填充的矩阵

例子:
>>> x = np.arange(6, dtype=np.int)
>>> np.full_like(x, 1)
array([1, 1, 1, 1, 1, 1])
>>> np.full_like(x, 0.1)
array([0, 0, 0, 0, 0, 0])
>>> np.full_like(x, 0.1, dtype=np.double)
array([ 0.1,  0.1,  0.1,  0.1,  0.1,  0.1])
>>> np.full_like(x, np.nan, dtype=np.double)
array([ nan,  nan,  nan,  nan,  nan,  nan])
>>> y = np.arange(6, dtype=np.double)
>>> np.full_like(y, 0.1)
array([ 0.1,  0.1,  0.1,  0.1,  0.1,  0.1])

没有更多推荐了,返回首页