BZOJ 1419 Red is good【期望DP】

本文深入探讨了一种基于博弈论的动态规划问题,通过状态转移方程f[i][j]=max{(f[i-1][j]+1)*i/(i+j)+(f[i][j-1]-1)*j/(i+j)}

f[i][j]f[i][j]f[i][j]表示选了iii张红牌,jjj张黑牌的最优期望得分。

那么接下来,有ii+j\frac{i}{i+j}i+ji的可能+1分,有ji+j\frac{j}{i+j}i+jj的可能-1分,所以不难写出状态转移方程:
f[i][j]=max{(f[i−1][j]+1)∗ii+j+(f[i][j−1]−1)∗ji+j}f[i][j]=max\{(f[i-1][j]+1)*\frac{i}{i+j}+(f[i][j-1]-1)*\frac{j}{i+j}\}f[i][j]=max{(f[i1][j]+1)i+ji+(f[i][j1]1)i+jj}

然后很显然,需要滚动一下第一维

#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define ll long long
#define rep(i,x,y) for(ll i=(x);i<=(y);i++)
#define repl(i,x,y) for(ll i=(x);i<(y);i++)
#define repd(i,x,y) for(ll i=(x);i>=(y);i--)
using namespace std;

const ll N=5e3+5;
const ll Inf=1e18;

ll n,m,cur;
double f[2][N];

int main() {
	scanf("%lld%lld",&n,&m);
	
	rep(i,1,n) {
		cur^=1;
		
		f[cur][0]=i*1.0;
		
		rep(j,1,m) f[cur][j]=max((double)0,(1+f[cur^1][j])*((double)i/(i+j))+(f[cur][j-1]-1)*((double)j/(i+j)));
	}
	
	printf("%.6lf",f[cur][m]);

	return 0;
}
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值