f[i][j]f[i][j]f[i][j]表示选了iii张红牌,jjj张黑牌的最优期望得分。
那么接下来,有ii+j\frac{i}{i+j}i+ji的可能+1分,有ji+j\frac{j}{i+j}i+jj的可能-1分,所以不难写出状态转移方程:
f[i][j]=max{(f[i−1][j]+1)∗ii+j+(f[i][j−1]−1)∗ji+j}f[i][j]=max\{(f[i-1][j]+1)*\frac{i}{i+j}+(f[i][j-1]-1)*\frac{j}{i+j}\}f[i][j]=max{(f[i−1][j]+1)∗i+ji+(f[i][j−1]−1)∗i+jj}
然后很显然,需要滚动一下第一维
#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define ll long long
#define rep(i,x,y) for(ll i=(x);i<=(y);i++)
#define repl(i,x,y) for(ll i=(x);i<(y);i++)
#define repd(i,x,y) for(ll i=(x);i>=(y);i--)
using namespace std;
const ll N=5e3+5;
const ll Inf=1e18;
ll n,m,cur;
double f[2][N];
int main() {
scanf("%lld%lld",&n,&m);
rep(i,1,n) {
cur^=1;
f[cur][0]=i*1.0;
rep(j,1,m) f[cur][j]=max((double)0,(1+f[cur^1][j])*((double)i/(i+j))+(f[cur][j-1]-1)*((double)j/(i+j)));
}
printf("%.6lf",f[cur][m]);
return 0;
}
本文深入探讨了一种基于博弈论的动态规划问题,通过状态转移方程f[i][j]=max{(f[i-1][j]+1)*i/(i+j)+(f[i][j-1]-1)*j/(i+j)}
388

被折叠的 条评论
为什么被折叠?



