大数定律和中心极限定理

See this article on my own blog https://dyingdown.github.io/2020/01/15/Law-of-Large-Numbers/
第五章 大数定律和中心极限定理

一、*大数定律

(1)切比雪夫不等式

XX有数学期望E(X)=μ,D(X=σ2)E(X)=\mu,D(X=\sigma^2), 则对任意正整数ε\varepsilon

P{xμε}σ2ε2P\{\left| x - \mu \right| \geq \varepsilon \} \leq \frac{\sigma ^2}{\varepsilon ^ 2}

P{xμ<ε}1σ2ε2P\{\left| x - \mu \right| < \varepsilon \} \geq 1-\frac{\sigma ^2}{\varepsilon ^ 2}

​ 此不等式说明D(X)D(X)越小,P{xμε}P\{\left| x - \mu \right| \geq \varepsilon \}越小;反之,P{xμ<ε}P\{\left| x - \mu \right| < \varepsilon \}越大。也就是D(X)D(X)很小时,随机变量取值基本集中在E(X)E(X)附近。

(2)定义

​ 设{Xn}\{X_n\}为一随机变量序列,aa是一个常数,若对任意正整数ε\varepsilon

limnP{xna<ε}=1 \lim _{n \rightarrow \infty} P\left\{\left|x_{n}-a\right|<\varepsilon\right\}=1
​ 则称{Xn}\{X_n\}依概率收敛于aa,即为Xnpa(n)X_{n} \stackrel{p}{\rightarrow} a(n \rightarrow \infty)

​ 有如下性质:

Xnpa,YnpbX_{n} \stackrel{p}{\rightarrow} a, Y_{n} \stackrel{p}{\rightarrow} b, 设g(x,y)g(x,y)(a,b)(a,b)点连续,则

g(Xn,Yn)Pg(a,b) g\left(X_{n}, Y_{n}\right) \stackrel{P}{\rightarrow} g(a, b)
(3)切比雪夫大数定律

​ 设(X1,X2,,Xn,)\left(X_{1}, X_{2}, \cdots, X_{n},\cdots \right)是一列相互独立的随机变量序列,并且E(Xi),D(Xi)E(X_i),D(X_i)均存在,同时存在CCD(Xi)C(i=1,2,)D(X_i) \leq C(i=1,2,\cdots),则对任意的ε>0\varepsilon>0,有
limnP{1ni=1nXi1ni=1nE(Xi)<ε}=1 \lim _{n \rightarrow \infty} P\left\{\left|\frac{1}{n} \sum_{i=1}^{n} X_{i}-\frac{1}{n} \sum_{i=1}^{n} E\left(X_{i}\right)\right|<\varepsilon\right\}=1
​ 也即

1ni=1nXi1ni=1nE(Xi)p0(n) \frac{1}{n} \sum_{i=1}^{n} X_{i}-\frac{1}{n} \sum_{i=1}^{n} E\left(X_{i}\right) \stackrel{p}{\rightarrow} 0(n \rightarrow \infty)
(4)辛钦大数定律

​ 设(X1,X2,,Xn,)\left(X_{1}, X_{2}, \cdots, X_{n},\cdots \right)是一列相互独立且服从同一分布的随机变量序列,E(X)=μ(1,2,)E(X)=\mu(1,2,\cdots),则1ni=1nXi\frac{1}{n} \sum_{i=1}^{n} X_{i}依概率收敛与μ\mu,即

1ni=1nXipμ(n) \frac{1}{n} \sum_{i=1}^{n} X_{i} \stackrel{p}{\rightarrow} \mu(n \rightarrow \infty)
(5)伯努利大数定律

nAn_Ann次独立重复复实验中AA发生的次数,pp是事件AA在每次实验中发生的概率,则对任意正整数,有ε\varepsilon

limnP{nAnp<ε}=1 \lim _{n \rightarrow \infty} P\left\{\left|\frac{n_{A}}{n}-p\right|<\varepsilon\right\}=1
​ 即 nApnp(n)\frac{n_{A} p}{n} \rightarrow p(n \rightarrow \infty)

二、中心极限定理

(1)独立同分布中心极限定理

​ 设{X1,X2,,Xn,}\{X_{1}, X_{2}, \cdots, X_{n},\cdots \}是一列相互独立且服从同一分布的随机变量序列,有数学期望E(Xi)=μ,D(Xi)=σ2>0(i=1,2,)E(X_i)=\mu,D(X_i)=\sigma^2>0(i=1,2,\cdots),则随机变量和i=1nXi\sum_{i=1}^{n} X_{i}的标准变化量

Zn=1=1nxiE(i=1nxi)D(i=1nxi)=i=1nxinμnσ Z_n=\frac{\sum_{1=1}^{n} x_{i}-E\left(\sum_{i=1}^{n} x_{i}\right)}{\sqrt{D\left(\sum_{i=1}^{n} x_{i}\right)}}=\frac{\sum_{i=1}^{n} x_{i}-n \mu}{\sqrt{n} \sigma}
​ 的分布函数Fn(x)F_n(x)对于任意xx满足

limnFn(x)=limnP{i=1nxinμnσx}=x12πet2dt=ϕ(x) \lim _{n \rightarrow \infty} F_{n}(x)=\lim _{n \rightarrow \infty} P\left\{\frac{\sum_{i=1}^{n} x_{i}-n \mu}{\sqrt{n} \sigma} \leq x\right\}=\int_{-\infty}^{x} \frac{1}{\sqrt{2 \pi}} e^{-\frac{t}{2}} d t=\phi(x)
​ 该定理说明当nn \rightarrow \infty时,随机变量ZnZ_n的分布函数收敛于标准正态分布函数。不论{X1,X2,,Xn,}\{X_{1}, X_{2}, \cdots, X_{n},\cdots \}服从什么分布,只要满足定理条件,nn充分大时i=1nXi\sum_{i=1}^{n} X_{i},可以近似服从正态分布。

(2)蒂莫夫-拉普拉斯中心极限定理

​ 设随机变量ηn(n=1,2,)\eta_{n}(n=1,2, \cdots)服从参数为n,p(0<p<1)n,p(0<p<1)的二项分布,则对任意实数xx

limnP{ηnnpnp(1p)x}=x12πet2dt=ϕ(x) \lim _{n \rightarrow \infty} P\left\{\frac{\eta_{n}-n p}{\sqrt{n p}(1-p)} \leq x\right\}=\int_{-\infty}^{x} \frac{1}{\sqrt{2 \pi}} e^{-\frac{t}{2}} d t=\phi(x)
​ 此定理表明,二项分布的极限时正态分布,当nn充分大时,可以近似计算二项分布的概率。当nn充分大时,二项分布的随机变量近似服从正态分布。

发布了90 篇原创文章 · 获赞 0 · 访问量 1737
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览