Lecture 23: Graphs and Traversals | cs61b 2019

Lecture 23: Graphs and Traversals

  • Tree Traversals
  • Graphs
  • Depth First Search
  • Breadth First Search

Trees and Traversals

Tree Definition

A tree consists of:

  • A set of nodes.
  • A set of edges that connect those nodes.
    • Constraint: There is exactly one path between any two nodes.

Rooted Trees Definition

A rooted tree is a tree where we’ve chosen one node as the “root”.

  • Every node N except the root has exactly one parent, defined as the first node on the path from N to the root.
  • A node with no child is called a leaf.

Tree Traversal Orderings

Depth First Traversals

  • 3 types: Preorder, Inorder, Postorder
  • Basic (rough) idea: Traverse “deep nodes” (e.g. A) before shallow ones (e.g. F).
  • Note: Traversing a node is different than “visiting” a node. See next slide.

Preorder: “Visit” a node, then traverse its children: D B A C F E G


Inorder traversal: Traverse left child, visit, then traverse right child: A B C D E F G

inOrder(BSTNode x) {
    if (x == null) return;

Postorder traversal: Traverse left, traverse right, then visit: ACBEGFD

postOrder(BSTNode x) {
    if (x == null) return;

A Useful Visual Trick (for Humans, Not Algorithms)


What Good Are All These Traversals?

Example 1:
Example 2:


Graph Definition

A graph consists of:

  • A set of nodes.
  • A set of zero or more edges, each of which connects two nodes.

A simple graph is a graph with:

  • No edges that connect a vertex to itself, i.e. no “loops”.
  • No two edges that connect the same vertices, i.e. no “parallel edges”.
    In 61B, unless otherwise explicitly stated, all graphs will be simple

Graph Types


Graph Terminology


Graph Problems

Graph Queries More Theoretically

Some well known graph problems and their common names:

  • s-t Path. Is there a path between vertices s and t?
  • Connectivity. Is the graph connected, i.e. is there a path between all vertices?
  • Biconnectivity. Is there a vertex whose removal disconnects the graph?
  • Shortest s-t Path. What is the shortest path between vertices s and t?
  • Cycle Detection. Does the graph contain any cycles?
  • Euler Tour. Is there a cycle that uses every edge exactly once?
  • Hamilton Tour. Is there a cycle that uses every vertex exactly once?
  • Planarity. Can you draw the graph on paper with no crossing edges?
  • Isomorphism. Are two graphs isomorphic (the same graph in disguise)?

Depth-First Traversal

s-t Connectivity solved by DFS

s-t connectivity problem

  • Given source vertex s and a target vertex t, is there a path between s and t?
  • Requires us to traverse the graph somehow.
    Try to come up with an algorithm for connected(s, t).



One possible recursive algorithm for connected(s, t).

  • Mark s.
  • Does s == t? If so, return true.
  • Otherwise, if connected(v, t) for any unmarked neighbor v of s, return true.
  • Return false.


Depth First Traversal

This idea of exploring a neighbor’s entire subgraph before moving on to the next neighbor is known as Depth First Traversal.

  • Example: Explore 1’s subgraph completely before using the edge 0-3.
  • Called “depth first” because you go as deep as possible.

Another example:

  • Let’s discuss an algorithm that computes a path to every vertex.
  • Let’s call this algorithm DepthFirstPaths.
  • Demo: DepthFirstPaths.

Tree Vs. Graph Traversals

DFS Preorder

What we just did in DepthFirstPaths is called “DFS Preorder

  • DFS Preorder: Action is before DFS calls to neighbors.
    • Our action was setting edgeTo.
    • Example: edgeTo[1] was set before DFS calls to neighbors 2 and 4.
  • One valid DFS preorder for this graph: 012543678
    • Equivalent to the order of dfs calls.


DFS Postorder.

DFS Postorder: Action is after DFS calls to neighbors.

  • Example: dfs(s):

    • mark(s)
    • For each unmarked neighbor n of s, dfs(n)
    • print(s)
  • Results for dfs(0) would be: 347685210

  • Equivalent to the order of dfs returns.(和DFS 执行完返回的顺序一致,即逆序)



Graphs are a more general idea than a tree.

  • A tree is a graph where there are no cycles and every vertex is connected.
  • Key graph terms: Directed, Undirected, Cyclic, Acyclic, Path, Cycle.

Graph problems vary widely in difficulty.

  • Common tool for solving almost all graph problems is traversal.
  • A traversal is an order in which you visit / act upon vertices.
  • Tree traversals:
    • Preorder, inorder, postorder, level order.
  • Graph traversals:
    • DFS preorder, DFS postorder, BFS.
    • By performing actions / setting instance variables during a graph (or tree) traversal, you can solve problems like s-t connectivity or path finding.
发布了20 篇原创文章 · 获赞 1 · 访问量 563


©️2019 CSDN 皮肤主题: 1024 设计师: 上身试试