转自:http://www.cnblogs.com/luyaoblog/p/6775342.html
除了在Matlab中使用PRTools工具箱中的svm算法,Python中一样可以使用支持向量机做分类。因为Python中的sklearn库也集成了SVM算法,本文的运行环境是Pycharm。
一、导入sklearn算法包
Scikit-Learn库已经实现了所有基本机器学习的算法,具体使用详见官方文档说明:http://scikit-learn.org/stable/auto_examples/index.html#support-vector-machines。
skleran中集成了许多算法,其导入包的方式如下所示,
逻辑回归:from sklearn.linear_model import LogisticRegression
朴素贝叶斯:from sklearn.naive_bayes import GaussianNB
K-近邻:from sklearn.neighbors import KNeighborsClassifier
决策树:from sklearn.tree import DecisionTreeClassifier
支持向量机:from sklearn import svm
二、sklearn中svc的使用
(1)使用numpy中的loadtxt读入数据文件
loadtxt()的使用方法:
fname:文件路径。eg:C:/Dataset/iris.txt。
dtype:数据类型。eg:float、str等。
delimiter:分隔符。eg:‘,’。
converters:将数据列与转换函数进行映射的字典。eg:{1:fun},含义是将第2列对应转换函数进行转换。
usecols:选取数据的列。
以Iris兰花数据集为例子:
由于从UCI数据库中下载的Iris原始数据集的样子是这样的,前四列为特征列,第五列为类别列,分别有三种类别Iris-setosa, Iris-versicolor, Iris-virginica。
当使用numpy中的loadtxt函数导入该数据集时,假设数据类型dtype为浮点型,但是很明显第五列的数据类型并不是浮点型。
因此我们要额外做一个工作,即通过loadtxt()函数中的converters参数将第五列通过转换函数映射成浮点类型的数据。
首先,我们要写出一个转换函数:
1
2
3
|
def
iris_type(s):
it
=
{
'Iris-setosa'
:
0
,
'Iris-versicolor'
:
1
,
'Iris-virginica'
:
2
}
return
it[s]
|
接下来读入数据,converters={4: iris_type}中“4”指的是第5列:
1
2
|
path
=
u
'D:/f盘/python/学习/iris.data'
# 数据文件路径
data
=
np.loadtxt(path, dtype
=
float
, delimiter
=
','
, converters
=
{
4
: iris_type})
|
读入结果:
(2)将Iris分为训练集与测试集
1
2
3
|
x, y
=
np.split(data, (
4
,), axis
=
1
)
x
=
x[:, :
2
]
x_train, x_test, y_train, y_test
=
train_test_split(x, y, random_state
=
1
, train_size
=
0.6
)
|
1. split(数据,分割位置,轴=1(水平分割) or 0(垂直分割))。
2. x = x[:, :2]是为方便后期画图更直观,故只取了前两列特征值向量训练。
3. sklearn.model_selection.train_test_split随机划分训练集与测试集。train_test_split(train_data,train_target,test_size=数字, random_state=0)
参数解释:
train_data:所要划分的样本特征集
train_target:所要划分的样本结果
test_size:样本占比,如果是整数的话就是样本的数量
random_state:是随机数的种子。
随机数种子:其实就是该组随机数的编号,在需要重复试验的时候,保证得到一组一样的随机数。比如你每次都填1,其他参数一样的情况下你得到的随机数组是一样的。但填0或不填,每次都会不一样。随机数的产生取决于种子,随机数和种子之间的关系遵从以下两个规则:种子不同,产生不同的随机数;种子相同,即使实例不同也产生相同的随机数。
(3)训练svm分类器
1
2
3
|
# clf = svm.SVC(C=0.1, kernel='linear', decision_function_shape='ovr')
clf
=
svm.SVC(C
=
0.8
, kernel
=
'rbf'
, gamma
=
20
, decision_function_shape
=
'ovr'
)
clf.fit(x_train, y_train.ravel())
|
kernel='linear'时,为线性核,C越大分类效果越好,但有可能会过拟合(defaul C=1)。
kernel='rbf'时(default),为高斯核,gamma值越小,分类界面越连续;gamma值越大,分类界面越“散”,分类效果越好,但有可能会过拟合。
decision_function_shape='ovr'时,为one v rest,即一个类别与其他类别进行划分,
decision_function_shape='ovo'时,为one v one,即将类别两两之间进行划分,用二分类的方法模拟多分类的结果。
(4)计算svc分类器的准确率
1
2
3
4
5
6
|
print
clf.score(x_train, y_train)
# 精度
y_hat
=
clf.predict(x_train)
show_accuracy(y_hat, y_train,
'训练集'
)
print
clf.score(x_test, y_test)
y_hat
=
clf.predict(x_test)
show_accuracy(y_hat, y_test,
'测试集'
)
|
结果为:
如果想查看决策函数,可以通过decision_function()实现
1
2
|
print
'decision_function:\n'
, clf.decision_function(x_train)
print
'\npredict:\n'
, clf.predict(x_train)
|
结果为:
decision_function中每一列的值代表距离各类别的距离。
(5)绘制图像
1.确定坐标轴范围,x,y轴分别表示两个特征
1
2
3
4
5
|
x1_min, x1_max
=
x[:,
0
].
min
(), x[:,
0
].
max
()
# 第0列的范围
x2_min, x2_max
=
x[:,
1
].
min
(), x[:,
1
].
max
()
# 第1列的范围
x1, x2
=
np.mgrid[x1_min:x1_max:
200j
, x2_min:x2_max:
200j
]
# 生成网格采样点
grid_test
=
np.stack((x1.flat, x2.flat), axis
=
1
)
# 测试点
# print 'grid_test = \n', grid_testgrid_hat = clf.predict(grid_test) # 预测分类值grid_hat = grid_hat.reshape(x1.shape) # 使之与输入的形状相同
|
这里用到了mgrid()函数,该函数的作用这里简单介绍一下:
假设假设目标函数F(x,y)=x+y。x轴范围1~3,y轴范围4~6,当绘制图像时主要分四步进行:
【step1:x扩展】(朝右扩展):
[1 1 1]
[2 2 2]
[3 3 3]
【step2:y扩展】(朝下扩展):
[4 5 6]
[4 5 6]
[4 5 6]
【step3:定位(xi,yi)】:
[(1,4) (1,5) (1,6)]
[(2,4) (2,5) (2,6)]
[(3,4) (3,5) (3,6)]
【step4:将(xi,yi)代入F(x,y)=x+y】
因此这里x1, x2 = np.mgrid[x1_min:x1_max:200j, x2_min:x2_max:200j]后的结果为:
再通过stack()函数,axis=1,生成测试点
2.指定默认字体
1
2
|
mpl.rcParams[
'font.sans-serif'
]
=
[u
'SimHei'
]
mpl.rcParams[
'axes.unicode_minus'
]
=
False
|
3.绘制
1
2
3
4
5
6
7
8
9
10
11
12
|
cm_light
=
mpl.colors.ListedColormap([
'#A0FFA0'
,
'#FFA0A0'
,
'#A0A0FF'
])
cm_dark
=
mpl.colors.ListedColormap([
'g'
,
'r'
,
'b'
])
plt.pcolormesh(x1, x2, grid_hat, cmap
=
cm_light)
plt.scatter(x[:,
0
], x[:,
1
], c
=
y, edgecolors
=
'k'
, s
=
50
, cmap
=
cm_dark)
# 样本
plt.scatter(x_test[:,
0
], x_test[:,
1
], s
=
120
, facecolors
=
'none'
, zorder
=
10
)
# 圈中测试集样本
plt.xlabel(u
'花萼长度'
, fontsize
=
13
)
plt.ylabel(u
'花萼宽度'
, fontsize
=
13
)
plt.xlim(x1_min, x1_max)
plt.ylim(x2_min, x2_max)
plt.title(u
'鸢尾花SVM二特征分类'
, fontsize
=
15
)
# plt.grid()
plt.show()
|
pcolormesh(x,y,z,cmap)这里参数代入x1,x2,grid_hat,cmap=cm_light绘制的是背景。
scatter中edgecolors是指描绘点的边缘色彩,s指描绘点的大小,cmap指点的颜色。
xlim指图的边界。
最终结果为:
源码:
# -*- coding:utf-8 -*-
# -*- coding:utf-8 -*-
from
sklearn
import
svm
import
numpy as np
import
matplotlib.pyplot as plt
import
matplotlib as mpl
from
matplotlib
import
colors
from
sklearn.model_selection
import
train_test_split
def
iris_type(s):
it
=
{
'Iris-setosa'
:
0
,
'Iris-versicolor'
:
1
,
'Iris-virginica'
:
2
}
return
it[s]
def
show_accuracy(y_hat, y_test, param):
pass
path
=
'F:\\Test\\iris.data'
# 数据文件路径
data
=
np.loadtxt(path, dtype
=
float
, delimiter
=
','
, converters
=
{
4
: iris_type})
x, y
=
np.split(data, (
4
,), axis
=
1
)
x
=
x[:, :
2
]
x_train, x_test, y_train, y_test
=
train_test_split(x, y, random_state
=
1
, train_size
=
0.6
)
# clf = svm.SVC(C=0.1, kernel='linear', decision_function_shape='ovr')
clf
=
svm.SVC(C
=
0.8
, kernel
=
'rbf'
, gamma
=
20
, decision_function_shape
=
'ovr'
)
clf.fit(x_train, y_train.ravel())
print
clf.score(x_train, y_train)
# 精度
y_hat
=
clf.predict(x_train)
show_accuracy(y_hat, y_train,
'训练集'
)
print
clf.score(x_test, y_test)
y_hat
=
clf.predict(x_test)
show_accuracy(y_hat, y_test,
'测试集'
)
print
'decision_function:\n'
, clf.decision_function(x_train)
print
'\npredict:\n'
, clf.predict(x_train)
x1_min, x1_max
=
x[:,
0
].
min
(), x[:,
0
].
max
()
# 第0列的范围
x2_min, x2_max
=
x[:,
1
].
min
(), x[:,
1
].
max
()
# 第1列的范围
x1, x2
=
np.mgrid[x1_min:x1_max:
200j
, x2_min:x2_max:
200j
]
# 生成网格采样点
grid_test
=
np.stack((x1.flat, x2.flat), axis
=
1
)
# 测试点
mpl.rcParams[
'font.sans-serif'
]
=
[u
'SimHei'
]
mpl.rcParams[
'axes.unicode_minus'
]
=
False
cm_light
=
mpl.colors.ListedColormap([
'#A0FFA0'
,
'#FFA0A0'
,
'#A0A0FF'
])
cm_dark
=
mpl.colors.ListedColormap([
'g'
,
'r'
,
'b'
])
# print 'grid_test = \n', grid_test
grid_hat
=
clf.predict(grid_test)
# 预测分类值
grid_hat
=
grid_hat.reshape(x1.shape)
# 使之与输入的形状相同
alpha
=
0.5
plt.pcolormesh(x1, x2, grid_hat, cmap
=
cm_light)
# 预测值的显示
# plt.scatter(x[:, 0], x[:, 1], c=y, edgecolors='k', s=50, cmap=cm_dark) # 样本
plt.plot(x[:,
0
], x[:,
1
],
'o'
, alpha
=
alpha, color
=
'blue'
, markeredgecolor
=
'k'
)
plt.scatter(x_test[:,
0
], x_test[:,
1
], s
=
120
, facecolors
=
'none'
, zorder
=
10
)
# 圈中测试集样本
plt.xlabel(u
'花萼长度'
, fontsize
=
13
)
plt.ylabel(u
'花萼宽度'
, fontsize
=
13
)
plt.xlim(x1_min, x1_max)
plt.ylim(x2_min, x2_max)
plt.title(u
'鸢尾花SVM二特征分类'
, fontsize
=
15
)
# plt.grid()
plt.show()