洛谷OJ 1155 双栈排序(二分图染色)

版权声明:转载请注明出处:http://blog.csdn.net/yasola,谢谢 https://blog.csdn.net/Yasola/article/details/77868556

题目描述

Tom最近在研究一个有趣的排序问题。如图所示,通过2个栈S1和S2,Tom希望借助以下4种操作实现将输入序列升序排序。

操作a

如果输入序列不为空,将第一个元素压入栈S1

操作b

如果栈S1不为空,将S1栈顶元素弹出至输出序列

操作c

如果输入序列不为空,将第一个元素压入栈S2

操作d

如果栈S2不为空,将S2栈顶元素弹出至输出序列

如果一个1~n的排列P可以通过一系列操作使得输出序列为1,2,…,(n-1),n,Tom就称P是一个“可双栈排序排列”。例如(1,3,2,4)就是一个“可双栈排序序列”,而(2,3,4,1)不是。下图描述了一个将(1,3,2,4)排序的操作序列: < a,c,c,b,a,d,d,b >

当然,这样的操作序列有可能有几个,对于上例(1,3,2,4),< a,c,c,b,a,d,d,b>是另外一个可行的操作序列。Tom希望知道其中字典序最小的操作序列是什么。

输入输出格式

输入格式:
输入文件twostack.in的第一行是一个整数n。

第二行有n个用空格隔开的正整数,构成一个1~n的排列。

输出格式:
输出文件twostack.out共一行,如果输入的排列不是“可双栈排序排列”,输出数字0;否则输出字典序最小的操作序列,每两个操作之间用空格隔开,行尾没有空格。

输入输出样例

输入样例#1:
【输入样例1】
4
1 3 2 4
【输入样例2】
4
2 3 4 1
【输入样例3】
3
2 3 1

输出样例#1:
【输出样例1】
a b a a b b a b
【输出样例2】
0
【输出样例3】
a c a b b d
说明

30%的数据满足: n<=10

50%的数据满足: n<=50

100%的数据满足: n<=1000

题目大意:

  有一个数字序列,问能不能通过两个栈对它进行排序,如果可以输出子点序最小的操作方案。

解题思路:

  首先,对于任意一对元素a[i], a[j](i<j),若存在一个元素a[k]满足k>ja[k]<a[i]则a[i]与a[j]不能出现在同一个栈中。
  把元素看作点,对于不能同时出现在同一个栈中的每一对元素连一条无向边,于是我们就可以通过二分图染色判定是否有解,以及这个元素应该加入那个栈中。至于输出方案只要根据染色的结果模拟一遍即可。

AC代码:

#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <vector>
#include <queue>
#include <stack>
using namespace std;
#define INF 0x3f3f3f3f

const int MAXN=1000+3;
int N, a[MAXN];
int the_min[MAXN];//保存a[i]到a[N]的最小值
int color[MAXN];//保存二分图染色的结果
vector<int> G[MAXN];
stack<int> st1, st2;//用于模拟

bool dfs(int u, bool c)
{
    color[u]=c+1;
    for(int i=0;i<G[u].size();++i)
    {
        int v=G[u][i];
        if(!color[v] && !dfs(v, !c))
            return false;
        else if(color[v]==color[u])
            return false;
    }
    return true;
}

int main()
{
    scanf("%d", &N);
    for(int i=0;i<N;++i)
    {
        scanf("%d", &a[i]);
        --a[i];
    }
    the_min[N]=INF;
    for(int i=N-1;i>=0;--i)
        the_min[i]=min(the_min[i+1], a[i]);
    for(int i=0;i<N;++i)
        for(int j=i+1;j<N;++j)
            if(a[i]<a[j] && the_min[j+1]<a[i])
            {
                G[i].push_back(j);
                G[j].push_back(i);
            }
    for(int i=0;i<N;++i)
        if(!color[i] && !dfs(i, 0))//出现冲突,无解
        {
            puts("0");
            return 0;
        }
    st1.push(-1);
    st2.push(-1);
    int now=0;//当前要输出的元素
    for(int i=0;i<N;++i)
    {
        if(color[i]==1)
        {
            printf("a ");
            st1.push(a[i]);
        }
        else
        {
            printf("c ");
            st2.push(a[i]);
        }
        while(st1.top()==now || st2.top()==now)
        {
            if(st1.top()==now)
            {
                putchar('b');
                st1.pop();
            }
            if(st2.top()==now)
            {
                putchar('d');
                st2.pop();
            }
            ++now;
            if(now==N)
                putchar('\n');
            else putchar(' ');
        }
    }

    return 0;
}
阅读更多

没有更多推荐了,返回首页