DeepSeek上RA8单片机,实现教程来了!

关注+星标公众,不错过精彩内容

素材来源 | RTThread物联网操作系统

DeepSeek已经火遍各行各业,身在 IT 行业,还是有必要多了解一点技能。

这里分享一下 DeepSeek上RA8单片机实现的方法。

测试环境

开发板:瑞萨RA8D1单片机(Vision Board开发板)

d1f417b8b0cb4097858d689c53d0e47d.jpeg

开发环境:RT-Thread Studio

操作系统:RT-Thread 5.0.2

终端工具:MobaXterm

实现过程(以RA8D1单片机为例)


1.  登录 DeepSeek-API :

https://api-docs.deepseek.com/zh-cn/

2.  创建 DeepSeek 的API-KEY:

e24c97f9945f73ded954b6718fd68e74.png

2e7ad1f2be24f7b018dcdd6c56c110a1.png

3.  基于RA8D1开发板新建wifi示例工程

e26bc0f19cdbf5ee4e83c95dbac0a2cd.png

4. 配置LLM软件包:双击 RT-Thread Settings,选择添加软件包,搜索llm关键字

99ee6fb6f4cd9f3437cf8189325caa1d.png

5.  添加此软件包到工程,接下来进行软件包配置,输入上面获取的API-KEY:

6852150256d9cad81b606cad5b4d3969.png

6. 配置WebClient-TLS模式:

在RT-Thread Settings->软件包->IoT-物联网->WebClient->选择TLS模式目录下,选择MbedTLS support。  

b4c443908be839482758d637473a3522.png

7. 使能软件RTC功能

ae5a25a74e509a2ab5cdda5890fb6d10.png

8. 更新软件包配置:

在 RT-Thread Settings 界面下 Ctrl+S 保存软件包配置,随后编译代码,烧录即可。

9.  开发板手动连接Wifi:

打开串口终端工具,输入wifi join [wifi名称] [wifi密码]

b57b3853e52b85c8ade0282a3c9eaac7.png

10. 输入llm即可进入聊天终端,CTRL+D可以退出聊天窗口返回MSH终端:

6bd1c605a648c97929f27fd9e9188557.png

开源仓库地址,欢迎体验~

https://github.com/Rbb666/llm_chat

注意:由于当前Deepseek服务器资源紧张,可能会出现连接失败,导致如下报错:

11531f90ad89dbf8e1ce31d9f25456a8.png

可尝试切换豆包或阿里通义千问大语言模型进行体验。

------------ END -----------

基于RA2单片机移植RTT打印功能

单片机使用printf打印编译出错,有哪些情况?

基于单片机的Reality AI数据采集插件

### 如何在单片机上部署 DeepSeek 框架 目前,在单片机上部署复杂的机器学习框架如 DeepSeek 并不是一件常见的事情,因为大多数单片机资源有限,难以支持深度学习模型所需的计算能力和内存空间。然而,随着边缘计算的发展和技术的进步,一些优化后的轻量级神经网络可以在特定条件下运行于高性能的单片机之上。 对于希望了解如何在单片机上部署 DeepSeek 或类似的深度学习框架,可以考虑以下几个方面: #### 评估硬件能力 首先需要确认所使用的单片机是否具备足够的处理性能、存储器容量以及其他必要的外设接口来满足 DeepSeek 运行的需求[^1]。例如,某些高端型号可能配备了浮点运算单元(FPU),这有助于加速矩阵乘法等操作;而较大的闪存和RAM则允许加载更复杂的数据集或预训练好的模型权重。 #### 获取适合嵌入式的版本 通常情况下,标准版的 Python 库并不适用于裸金属编程环境中的单片机开发。因此寻找专门为嵌入式平台定制编译过的静态库或者是移植到 C/C++ 的实现非常重要。如果存在针对目标架构进行了裁剪的小型化版本,则应优先选用这些经过优化调整后的软件包[^2]。 #### 集成至项目中 一旦获得了合适的 DeepSeek 实现形式之后,就可以将其集成进现有的固件工程项目里去了。具体做法可能是通过 SPI/IIC 接口连接外部 NAND Flash 来存放大型参数表,或是利用 SD 卡读写功能动态下载更新最新的算法配置文件等等方式完成初始化设置工作[^3]。 #### 测试验证效果 最后一步就是编写应用程序代码调用上述准备完毕的各项组件并进行全面的功能性和稳定性测试了。考虑到功耗管理等因素的影响,在实际产品设计阶段还需要特别注意电源供给策略的选择以及休眠唤醒机制的设计等问题[^4]。 ```cpp // 假定已经成功引入了一个名为 "deepseek_lite.h" 和对应的 .c 文件作为简化版 API 头文件 #include "deepseek_lite.h" void setup_deepseek_model(const char* model_path){ // 初始化模型... } float predict_with_deepseek(float input_data[]){ float result; // 使用输入数据进行预测... return result; } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值