在小编的社群(微信群+QQ群)里,活跃着5000+的群友,小编和他们的交流已经超过了一年。在这个过程中,搜集了他们的很多高频的痛点,他们提出的有些问题虽然很让人啼笑皆非,但是却代表了很多同学的想法。
比如,有的同学说,我要做的是机器学习,老大却要我做hadoop;有的同学说,群主,你拉我进的是机器学习群,但我要学深度学习;有的同学说,老师,你说的LR是线性回归吗。这样一系列问题,小编都整理到了今天的文章中,以PPT的形式提供给看官。
常用群友问,我学了机器学习以后能够干嘛呢?请注意看下面的PPT:
以下题目仅仅是举例,不是归纳,但是都是真实面试题
BAT的机器学习工程师,基本上都被要求使用hadoop这样的大数据平台来解决问题,为什么?机器学习是一门建立在数据之上的科学,数据越多,你的机器学习模型才会越聪明,放着BAT大量的数据不拿来用,岂不是傻?
当然,如果看官说,BAT不是我的菜,我只想找个能做机器学习的地方就行了,那么请自行略过。
深度学习是机器学习的一种。千万不要以为机器学习的群不讨论深度学习
深度学习特指的是机器学习理论体系中,通过深层神经网络方法来训练模型解决问题的那个分支。
深度学习为什么好:
1) 以前能做的,现在做得更好。
比如Hinton的学生Alex采用深度神经网络出战imageNet,一炮打响,将多年来压制神经网络发展的SVM挑落马下,终结了SVM和神经网络之间的恩恩怨怨;
Hinton老师牛不牛?咱们以前发布过Hinton老师讲解深度学习的视频课程,没有看过的同学赶紧来补习一下咯:听Hinton讲深度学习
比如RNN应用于短文本分类任务,带来显著的效果提升。(这篇文章带你来复习一下RNN:循环神经网络(RNN) 基础浅析 )
下图是以前小编训练的一个RNN写诗的效果。是不是还不错呢?
2) 以前不能做的,现在能做。比如端到端学习。
普通机器学习是不是可以扔掉了 不学了?
1)深度学习脱胎于机器学习,所以基本套路不能脱离,比如怎么评估模型、怎么做特征工程、怎么解决样本不均衡,这些思想是一致的
2)普通机器学习方法仍然具有现实价值。比如一般工程中要做一个模型,首先会用传统模型(比如LR、GBDT)做一个baseline,然后再用深度模型来增强它。通过模型融合的思路,传统模型和深度学习是可以做融合的,得到一个最优模型
3)总之,机器学习的基本武学还是不能荒废。当然,有些模型在一线公司里逐渐没有人用了,比如SVM。学习要注意分清轻重。
小伙伴们,一般当我们谈论LR时,我们说的是逻辑回归(对数几率回归)
BAT的机器学习工程师,会使用Python还不够,还需要会使用C++或者Java中的其中之一。为什么?因为虽然你可以使用Python训练机器学习模型,但是当你的模型需要上线提供实时服务的时候,你就必须在原业务的架构上去做上线开发了。以百度为例,不论大搜索还是凤巢,系统都是用C++编写的。因此,光能训练牛逼的模型还不够,你还得会上线开发,才能真正拿到这个牛逼模型带来的KPI。
当然,您也可以说,BAT不是我的菜,请自行无视上面的内容。
想要和小编有更多交流,请加入我们的微信群: